1. Consider two independent random variables X and Y. Probability density function of X is $\varphi_{X}(x)=$ $\frac{1}{2} e^{-|x-1|}, x \in \mathbb{R}$, while $Y: \mathcal{U}(0,1 / 2)$. Find autocovariance function of a stochastic process $Z_{t}=(t+$ 1) $X Y^{2}$.
2. Due to covid-19 pandemic government decided to quarantine people and close borders. People are only allowed to go to supermarket, pharmacy or to visit a doctor if necessary and they can perform only one action per day. They can also stay at home all day. Maya is a chronic patient and she has to receive a therapy from time to time. Also, she will not perform the same action two days in a row. If Maya went to supermarket today, the next day she will go to pharmacy or to receive the therapy with equal probabilities, while she will stay at home with probability 0.6 . If she received the therapy, the next day she will go to pharmacy. If she went to pharmacy, the next day she will go to supermarket with probability 0.4 , while she will stay at home with probability 0.5 . After all day at home, Maya will go to supermarket or to receive a therapy with probabilities 0.5 . Find if, in the long run, Maya more often stays at home or goes to pharmacy.
3. Passengers arrive at a railway station according to a homogeneous Poisson process with intensity λ. At the beginning (time 0), there are no passengers at the station. The train departs at time t_{s}. Denote by W the total waiting time of all passengers arrived up to the departure of the train.
(a) Find W.
(b) Suppose that the number of passangers arrived at a railway station up to time t_{s} is 3 . Find the expected total waiting time of all passengers arrived up to the departure of the train.
4. W_{t} is standard Brownian motion. Find

$$
E\left(\left.W_{t}^{3}-3 W_{t} W_{\frac{t}{4}}+3 W_{\frac{t}{3}} W_{\frac{t}{4}} \right\rvert\, \mathcal{W}_{\frac{t}{3}}\right), \quad t>0
$$

