Stochastic processes – written exam 27.1.2020.

1. A rich man is playing a series of games. The stake in n-th game is 1 or 2 dollars, depending on the outcome in the previous game. If he lost (n-1)-st game, the stake in n-th is 1 and the probability that he wins the n-th game is $\frac{1}{2}$. In that case he earns additional 1 dollar. Otherwise, he losses 1 dollar he invested. If he won (n-1)-st game the stake in n-th is 2 and the probability that he wins the n-th game is $\frac{1}{3}$. In that case he earns additional 2 dollars. Otherwise, he losses 2 dollars he invested. Denote by X_n the random variable representing his gain in n-th game,

$$X_n : \begin{pmatrix} -2 & -1 & 1 & 2 \\ p_1 & p_2 & p_3 & p_4 \end{pmatrix}, \quad n \in \mathbb{N}_0$$

 X_0 denotes the initial state. Let $Y_n = \operatorname{sgn} X_n, n \in \mathbb{N}_0$.

- (a) Find $E(X_n|Y_{n-1})$.
- (b) Find the one step transition probability matrix of the Markov chain $\{Y_n\}$. What is the proportion of games the rich man losses?
- (c) Is Markov chain $\{Y_n\}$ stationary? Explain.
- (d) Calculate the probabilities p_i , i = 1, 2, 3, 4 and $E(X_n)$.
- 2. The occurrence times of the death of the policyholders of a certain life-insurance company are treated as an arrival times of insurance claims and the number of deaths is treated as Poisson process X_t with rate 2 per day. Denote by Z_n the amount of claims that the *n*-th policyholder that passed away carries. Suppose that random variables Z_n , n = 1, 2, ... are independent and uniformly distributed between 1000 and 5000 euros. Find the expected amount and variance of claims that the insurance company will have to pay during 5 days period.
- **3.** Consider the stochastic process $X_t = 2W_t + \sqrt{t}$, where W_t denotes standard Brownian motion.
 - (a) Find autocovarianse function of the stochastic process X_t .
 - (b) Check if the following is true

$$E(X_t^2|\mathcal{W}_s) = X_s^2, \quad s \in A = \{x > 0 : F_{X_t}(x) < 0.5\}.$$

(c) Is the process X_t^2 martingale with respect to history of Brownian motion \mathcal{W}_t ?