Stochastic processes - written exam

April 1st, 2019.

1. Let X be the randomly chosen number from the set $\{1,2,3,4,5,6\}$. Y is chosen from the same set among numbers that are integer multiple of X. Find $E(X \mid \mathcal{F}(Y))$.
2. Consider standard Brownian motion W_{t}. Discuss the value of

$$
E\left(W_{t}^{3}+2 W_{s}^{2}+W_{\alpha} \mid \mathcal{W}_{\alpha}\right), \quad t>s \geq 0
$$

with respect to a parameter $\alpha>0 . \mathcal{W}_{\alpha}$ is history of Brownian motion until time α (including α).
3. A Markov particle moves on points 0,1 and 2 arranged in a circle in the clockwise direction. A step in the clockwise direction occurs with probability $p, 0<p<1$, and a step in the counter-clockwise direction occurs with probability $1-p$. If Markov particle is initially positioned on point 0 , what proportion of time the particle will spend on point 0 ? Explain.
4. Consider the emission of γ-photons by a radioactive source. This can be modeled to a close approximation by a nonhomogeneous Poisson process $X(t)$ with intensity function $\lambda(t)$ given by $\lambda(t)=\alpha e^{-\beta t}, t \geq 0, \alpha, \beta>0$, where α is a parameter depending on the amount of the radioactive material and the β^{-1} is the mean life of the source. Calculate

$$
\frac{\partial}{\partial s} P\{X(s+t)-X(t)=0\}-\beta P\{X(s+t)-X(t)=1\}
$$

5. Consider a sequence of independent integrable identically distributed random variables Y_{1}, Y_{2}, \ldots having all positive values. Check if $X_{n}=\left(Y_{1} Y_{2} \cdot \ldots \cdot Y_{n}\right)^{1 / n}$ is martingale with respect to filtration $\left\{\mathcal{F}_{n}\right\}$, where $\mathcal{F}_{n}=\mathcal{F}\left(Y_{1}, \ldots, Y_{n}\right)$.
