Stochastic processes - written exam 16.4.2018.

1. Milan and Uroš play a dice game as follows. Each of them throws a dice, independently of the other one. If the sum is 5,6 or 7 , Milan wins. Otherwise, Uroš wins.
(a) Find a probability that Milan wins.
(b) What is the probability that Milan's throw resulted in 3, if it is knows that Milan won.
2. Suppose that Milan and Uroš play a series of games explained above. The overall winner is the first player to have won two more games that the other. Find the expected number of games played.
3. Consider a communications system which transmits the digits 0 and 1 . Each digit transmitted must pass through several stages, at each of which there is a probability $p \in(0,1)$ that the digit entered will be unchanged when it leaves. Let X_{n} denote the digit entering the $n-$ th stage.
(a) Find the state transition probability matrix.
(b) Find initial state vector such that the Markov chain $\left\{X_{n}, n \geq 0\right\}$ is stationary.
(c) Find $P\left\{X_{n+2}=1 \mid X_{n}=1\right\}$.
4. Customers arrive at the automatic teller machine in accordance with a Poisson process with rate 10 per hour. The amount of money withdrawn on each transaction is a random variable with mean $\$ 40$ and standard deviation $\$ 50$. A negative withdrawal means that money was deposited. The machine is in use for 16 hours daily. Approximate the probability that the total daily withdrawal is less that $\$ 7000$.
5. Find a constant a such that

$$
V(t)=W^{3}(t)+a W^{2}(t)-3 t W(t)+t, \quad t \geq 0
$$

is martingale, if $W(t)$ is standard Brownian motion.

