Stochastic processes - written exam
 17.6.2019.

1. Find the constant $c \in \mathbb{R}$ such that the function

$$
\varphi(x)=c|x| e^{-x^{2}}, x \in \mathbb{R}
$$

is probability density function of some random variable X and determine $D(X)$.
2. The game of chance is played as follows. The machine randomly and one by one displays digits 0 and 1 on the screen, with probabilities $1-p$ and p, respectively. The game ends when the first zero appears. If your stake in one game is $a>0$, the winning in that game equals the sum of all digits 0 and 1 shown on the screen. What is the expected amount of money you will win in one game? Find the value of p such that the game is fair (winnings are equal to losses).
3. Consider a mechanical device in which "shocks" occur according to a Poisson process with rate 0.1 per hour. The device fails when a total of K shocks occurs. Find the expected lifetime T of the device. Find the probabilities that K and $K-1$ shocks have occurred after $E(T)$ hours and compare those two values.
4. Consider an urn initially containing r red and b black balls. Repeated drawings are made from this urn as follows: after each drawing one returns a ball and adds a balls of the same color. Here r, b and a are positive integers. Let $\left\{Y_{n}\right\}$ be a sequence of random variables such that $Y_{n}=1$ if the n-th ball drawn is red and $Y_{n}=0$ if the $n-$ th ball drawn is black. Let r_{n} and b_{n} be the number of red and black balls, respectively in the urn after the n-th draw has been completed.
(a) Define Z_{n} as the number of red balls at the completion of the n-th draw. Express Z_{n} as a function of a random variables Y_{1}, \ldots, Y_{n}. Prove that $\left\{Z_{n}\right\}$ is Markov chain and find the one step transition probabilities. Is $\left\{Z_{n}\right\}$ homogeneous or non-homogeneous?
(b) Define X_{n} as the proportion of red balls in the urn at the completion of the n-th draw, that is $X_{n}=\frac{r_{n}}{r_{n} b_{n}}$. Prove that $\left\{X_{n}\right\}$ is a martingale with respect to the filtration $\left\{\mathcal{F}_{n}\right\}$, where $\mathcal{F}_{n}=\mathcal{F}\left(Y_{1}, \ldots, Y_{n}\right)$.

