1. Suppose that 2 batteries are randomly chosen without replacement from the following group of 12 batteries: 3 new, 4 used (working) and 5 defective. Let X denote the number of new batteries chosen and let Y denote the number of used batteries chosen. Find $E(X)$ and $E(X \mid Y)$.
2. Let W be an exponential random variable with probability density function

$$
\varphi_{W}(w)=\left\{\begin{array}{ll}
e^{-w}, & w \geq 0 \\
0, & \text { otherwise }
\end{array} .\right.
$$

(a) Find the cumulative distribution function $F_{X_{t}}$ of the time delayed ramp process $X_{t}=t-W$.
(b) Find the autocovariance function of a process X_{t}.
3. The diffusion of electrons and holes across a potential barrier in an electronic devise is modeled as follows. There are m black balls (electrons) in urn A and m white balls (holes) in urn B. We perform independent trials, in each of which a ball is selected at random from each urn and the selected ball from urn A is placed in urn B, while that from urn B is placed in A. Consider the Markov chain representing the number of black balls in urn A immediately after the n-th trial.
(a) Describe the one-step transition probabilities of the process.
(b) Suppose $m=2$. Compute the long-run fraction of time when urn A does not contain a black ball.
4. Events occur according to a nonhomogeneous Poisson process whose mean value function is given by

$$
m(t)=t^{2}+2 t, \quad t \geq 0 .
$$

Find the intensity function of this process. What is the probability that n events occur between times $t=4$ and $t=5$?
5. Show that for any $T>0, V(t)=W(t+T)-W(T)$ is a standard Brownian motion if $W(t)$ is.

