Martingales

Definition 1. A sequence ξ_1, ξ_2, \ldots of random variables is called a martingale with respect to a filtration $\mathcal{F}_1, \mathcal{F}_2, \ldots$ if

- 1. ξ_n is integrable for each $n = 1, 2, \ldots$,
- 2. ξ_1, ξ_n, \ldots is adapted to $\mathcal{F}_1, \mathcal{F}_2, \ldots,$
- 3. $E(\xi_{n+1}|\mathcal{F}_n) = \xi_n$ a.s. for each n = 1, 2, ...

Example 1. If $\mathcal{F}_n = \mathcal{F}(\xi_1, \xi_2, \dots, \xi_n)$ is σ -field generated by $\xi_1, \xi_2, \dots, \xi_n$ then ξ_1, ξ_2, \dots is adapted to $\mathcal{F}_1, \mathcal{F}_2, \dots$.

Problem 1. Let η_1, η_2, \ldots be a sequence of independent integrable random variables such that $E(\eta_n) = 0$ for all $n = 1, 2, \ldots$ Let

$$\xi_n = \eta_1 + \ldots + \eta_n,$$

$$\mathcal{F}_n = \mathcal{F}(\eta_1, \ldots, \eta_n).$$

Show that a sequence ξ_1, ξ_2, \ldots is a martingale with respect to a filtration $\mathcal{F}_1, \mathcal{F}_2, \ldots$

Problem 2. Show that if ξ_1, ξ_2, \ldots is a martingale with respect to $\mathcal{F}_1, \mathcal{F}_2, \ldots$ then $E(\xi_1) = E(\xi_2) = \ldots$

Problem 3. Let $\{N(t), t \ge 0\}$ be a Poisson process with rate λ . Show that the process $N(t) - \lambda t$ is martingale.

Problem 4. Let ξ_n be a symmetric random walk, that is,

$$\xi_n = \eta_1 + \ldots + \eta_n,$$

where η_1, η_2, \ldots is a sequence of independent identically distributed random variables such that

$$P(\eta_n = 1) = P(\eta_n = -1) = \frac{1}{2}.$$

Show that $\xi_n^2 - n$ is a martingale with respect to the filtration $\mathcal{F}_n = \mathcal{F}(\eta_1, \ldots, \eta_n)$.

Problem 5. Let ξ_n be a symmetric random walk, $\xi_n = \eta_1 + \ldots + \eta_n$, where η_1, η_2, \ldots is a sequence of independent identically distributed random variables such that

$$P(\eta_n = 1) = P(\eta_n = -1) = \frac{1}{2}$$

and \mathcal{F}_n the filtration defined by $\mathcal{F}_n = \mathcal{F}(\eta_1, \ldots, \eta_n)$. Show that

$$\gamma_n = (-1)^n \cos(\pi \xi_n)$$

is martingale with respect to \mathcal{F}_n .

Problem 6. Let ξ_n be a sequence of square integrable random variables. Show that if ξ_n is a martingale with respect to a filtration \mathcal{F}_n , then ξ_n^2 is a submartingale with respect to the same filtration.

Example 2. Suppose that you take part in a game such as the roulette, for example. Let η_1, η_2, \ldots be a sequence of integrable random variables, where η_n are your winnings (or losses) per unit stake in game n. If your stake in each game is one, then your total winnings after n games will be

$$\xi_n = \eta_1 + \ldots + \eta_n$$

We take the filtration

$$\mathcal{F}_n = \mathcal{F}(\eta_1, \ldots, \eta_n)$$

and also put $\xi_0 = 0$.

If n-1 rounds of the game have been played so far, your accumulated knowledge will be represented by the σ -field \mathcal{F}_{n-1} . The game is fair if

$$E(\xi_n | \mathcal{F}_{n-1}) = \xi_{n-1},$$

that is, you expect that your fortune at step n will on average be the same as at step n-1. The game will be favourable to you if

$$E(\xi_n | \mathcal{F}_{n-1}) \ge \xi_{n-1},$$

and unfavourable to you if

$$E(\xi_n | \mathcal{F}_{n-1}) \le \xi_{n-1},$$

for n = 1, 2, ... This corresponds to ξ_n being, respectively, a martingale, a submartingale, or a supermartingale with respect to \mathcal{F}_n .

Martingales and Brownian motion W_t

Let $\{W_t, t \ge 0\}$ be a Brownian motion process. Denote by

$$\mathcal{W}_s = \mathcal{F}(W_t, \ 0 \le t \le s)$$

the history of Brownian motion until time s.

Theorem 1. W_t is martingale with respect to W_s .

Theorem 2. $W_t^2 - t$ is martingale with respect to the history of Brownian motion W_s .