Martingales

Definition 1. A sequence ξ_{1}, ξ_{2}, \ldots of random variables is called a martingale with respect to a filtration $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ if

1. ξ_{n} is integrable for each $n=1,2, \ldots$,
2. ξ_{1}, ξ_{n}, \ldots is adapted to $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$,
3. $E\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)=\xi_{n}$ a.s. for each $n=1,2, \ldots$.

Example 1. If $\mathcal{F}_{n}=\mathcal{F}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ is σ-field generated by $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ then ξ_{1}, ξ_{2}, \ldots is adapted to $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$.

Problem 1. Let $\eta_{1}, \eta_{2}, \ldots$ be a sequence of independent integrable random variables such that $E\left(\eta_{n}\right)=0$ for all $n=1,2, \ldots$. Let

$$
\begin{aligned}
\xi_{n} & =\eta_{1}+\ldots+\eta_{n}, \\
\mathcal{F}_{n} & =\mathcal{F}\left(\eta_{1}, \ldots, \eta_{n}\right) .
\end{aligned}
$$

Show that a sequence ξ_{1}, ξ_{2}, \ldots is a martingale with respect to a filtration $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$.
Problem 2. Show that if ξ_{1}, ξ_{2}, \ldots is a martingale with respect to $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ then $E\left(\xi_{1}\right)=$ $E\left(\xi_{2}\right)=\ldots$.

Problem 3. Let $\{N(t), t \geq 0\}$ be a Poisson process with rate λ. Show that the process $N(t)-\lambda t$ is martingale.

Problem 4. Let ξ_{n} be a symmetric random walk, that is,

$$
\xi_{n}=\eta_{1}+\ldots+\eta_{n},
$$

where $\eta_{1}, \eta_{2}, \ldots$ is a sequence of independent identically distributed random variables such that

$$
P\left(\eta_{n}=1\right)=P\left(\eta_{n}=-1\right)=\frac{1}{2} .
$$

Show that $\xi_{n}^{2}-n$ is a martingale with respect to the filtration $\mathcal{F}_{n}=\mathcal{F}\left(\eta_{1}, \ldots, \eta_{n}\right)$.
Problem 5. Let ξ_{n} be a symmetric random walk, $\xi_{n}=\eta_{1}+\ldots+\eta_{n}$, where $\eta_{1}, \eta_{2}, \ldots$ is a sequence of independent identically distributed random variables such that

$$
P\left(\eta_{n}=1\right)=P\left(\eta_{n}=-1\right)=\frac{1}{2}
$$

and \mathcal{F}_{n} the filtration defined by $\mathcal{F}_{n}=\mathcal{F}\left(\eta_{1}, \ldots, \eta_{n}\right)$. Show that

$$
\gamma_{n}=(-1)^{n} \cos \left(\pi \xi_{n}\right)
$$

is martingale with respect to \mathcal{F}_{n}.

Problem 6. Let ξ_{n} be a sequence of square integrable random variables. Show that if ξ_{n} is a martingale with respect to a filtration \mathcal{F}_{n}, then ξ_{n}^{2} is a submartingale with respect to the same filtration.

Example 2. Suppose that you take part in a game such as the roulette, for example. Let $\eta_{1}, \eta_{2}, \ldots$ be a sequence of integrable random variables, where η_{n} are your winnings (or losses) per unit stake in game n. If your stake in each game is one, then your total winnings after n games will be

$$
\xi_{n}=\eta_{1}+\ldots+\eta_{n}
$$

We take the filtration

$$
\mathcal{F}_{n}=\mathcal{F}\left(\eta_{1}, \ldots, \eta_{n}\right)
$$

and also put $\xi_{0}=0$.
If $n-1$ rounds of the game have been played so far, your accumulated knowledge will be represented by the σ-field \mathcal{F}_{n-1}. The game is fair if

$$
E\left(\xi_{n} \mid \mathcal{F}_{n-1}\right)=\xi_{n-1}
$$

that is, you expect that your fortune at step n will on average be the same as at step $n-1$. The game will be favourable to you if

$$
E\left(\xi_{n} \mid \mathcal{F}_{n-1}\right) \geq \xi_{n-1}
$$

and unfavourable to you if

$$
E\left(\xi_{n} \mid \mathcal{F}_{n-1}\right) \leq \xi_{n-1}
$$

for $n=1,2, \ldots$. This corresponds to ξ_{n} being, respectively, a martingale, a submartingale, or a supermartingale with respect to \mathcal{F}_{n}.

Martingales and Brownian motion W_{t}

Let $\left\{W_{t}, t \geq 0\right\}$ be a Brownian motion process. Denote by

$$
\mathcal{W}_{s}=\mathcal{F}\left(W_{t}, 0 \leq t \leq s\right)
$$

the history of Brownian motion until time s.
Theorem 1. W_{t} is martingale with respect to \mathcal{W}_{s}.
Theorem 2. $W_{t}^{2}-t$ is martingale with respect to the history of Brownian motion \mathcal{W}_{s}.

