Brownian motion

Definition 1. A stochastic process $\{W_t, t \ge 0\}$ is said to be (standard) Brownian motion (Wiener process) process if

(*i*) $W_0 = 0$

- (ii) $\{W_t, t \ge 0\}$ has stationary and independent increments i.e. for each $0 < t_1 < t_2 < \ldots < t_{n-1} < t_n < \ldots, W_{t_1}, W_{t_2} W_{t_1}, \ldots, W_{t_n} W_{t_{n-1}}$ are independent random variables.
- (iii) $W_t W_s : \mathcal{N}(0, t s), t > s$. Specially, if we take s = 0 we have

 $W_t - W_0 = W_t : \mathcal{N}(0, t), \quad E[W_t] = 0, \quad D[W_t] = E[W_t^2] = t.$

Problem 1. Let $\{W_t, t \ge 0\}$ be a Brownian motion.

- (a) Find $P\{1 < W_1 < 2\}$.
- (b) Find $P\{W_2 < 3 | W_1 = 1\}.$

Problem 2. Over the course of a day, the stock price of a widely traded company can be modeled as a Brownian motion process where X(0) is the opening price at the morning bell. Suppose the unit of time t is an hour, the exchange is open for eight hours, and the standard deviation of the daily price change (the difference between the opening bell and closing bell prices) is 1/2 point. What is the value of the Brownian motion parameter α ?

Problem 3. Let X(t) be a Brownian motion process with variance $Var[X(t)] = \alpha t$. For a constant c > 0, determine whether Y(t) = X(ct) is a Brownian motion process.

Problem 4. If $\{W_t, t \ge 0\}$ ia a Brownian motion process with drift coefficient η and variance parameter σ^2 , then the process $\{X_t, t \ge 0\}$ defined by

$$X_t = e^{W_t}$$

is called geometric Brownian motion. Prove that

$$E[X_t] = e^{\eta t + \frac{\sigma^2 t}{2}}.$$