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1 Introduction to Probability Theory

Denote Ω as a sample space. Any subset of the sample space is known as an event. We
have

P (E ∪ F ) = P (E) + P (F )− P (EF ).

When E and F are mutually exclusive (EF = ∅) we have

P (E ∪ F ) = P (E) + P (F ).

Conditional probabiity is probability that E occurs given that F has occured and
is denoted by P (E|F ),

P (E|F ) =
P (EF )

P (F )
.

Because we know that F has occured, it follows that F become our new sample space and
hence the probability that the event EF occurs will equal the probability of EF relative
to the probability of F .

Two events E and F are said to be independent if

P (EF ) = P (E)P (F ).

This implies that E and F are independent if

P (E|F ) = P (E).

Multiplication Rule
Assuming that all the conditioning events have positive probability, we have

P
( n⋂
i=1

Ai

)
= P (A1)P (A2|A1)P (A3|A1 ∩A2) . . . P

(
An|

n−1⋂
i=1

Ai

)
.

Suppose that F1, F2, . . . , Fn are mutually exclusive events such that
⋃n
i=1 Fi = Ω (ex-

actly one of the events F1, . . . , Fn will occur). Using the fact that events EFi are mutually
exclusive, we obtain that

P (E) =
n∑
i=1

P (EFi) =
n∑
i=1

P (E|Fi)P (Fi).

Also, we have equation

P (Fj |E) =
P (E|Fj)P (Fj)∑n
i=1 P (E|Fi)P (Fi)

which is known as Bayes’ formula.

1.1 Exercises

1. A batch of 25 injection-molded parts contains 5 that have suffered excessive shrink-
age.

(a) If two parts are selected at random, and without replacement, what is the prob-
ability that the second part selected is one with excessive shrinkage?
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(b) If three parts are selected at random, and without replacement, what is the
probability that the third part selected is one with excessive shrinkage?

Solution: Let A denote an event that the first part selected has excessive shrinkage
and let B denote the event that the second part selected has excessive shrinkage.

(a) P (A) =
5

25
=

1

5
.

P (B) = P (B|A)P (A) + P (B|Ā)P (Ā) =
4

24

1

5
+

5

24

4

5
= 0.2.

(b) Denote by A1 = A ∩B, A2 = A ∩ B̄ + Ā ∩B and A3 = ĀB̄. Then

P (A1) =
1

30
, P (A2) =

1

3
, P (A3) =

19

30
.

Let C denote an event that the third part selected has excessive shrinkage. We
have

P (C) = P (C|A1)P (A1) + P (C|A2)P (A2) + P (C|A3)P (A3)

=
3

23

1

30
+

4

23

1

3
+

5

23

19

30
= 0.2.

2. One considers 100 people of whom 40 speak Russian, 30 English and 21 French.
Then 15 speak Russian and English, 10 Russian and French, 5 French and English
and 3 of them speak all three languages. Then one randomly chooses 3 of them.

(a) What is the probability that neither of 3 people speak foreign language?

(b) What is the probability that all three people speak Russian language?

(c) What is the probability that two of them speak some foreign language, but the
third person speaks no foreign language?

Solution: P (person speaks Russian) = 40
100 , P (person speaks French) = 21

100 ,

P (person speaks English) = 30
100 , P (person speaks no foreign language) = 36

100 .

(a) P (neither of 3 people speak foreign language) =
36 · 35 · 34

100 · 99 · 98

(b) P (three people speak Russian language) =
40 · 39 · 38

100 · 99 · 98
(c) Let A be an event that two of them speak some foreign language, but the third

person speaks no foreign language. P (A) =

(
64
2

)(
36
1

)(
100
3

)
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2 Random variables

A random variable is a real-valued function of the outcome of the experiment.

2.1 Discrete Random variables

A discrete random variable is a real-valued function of the outcome of the experiment
that can take a finite or countably infinite number of values.

A discrete random variable has a associated probability mass function (PMF),
which gives the probability of each numerical value that random variable can take and it
is denoted pX . If x is any real number, the probability mass of x, denoted pX(x), is the
probability of the event {X = x} consisting of all outcomes that give rise to a value of X
equals to x:

pX(x) = P ({x = X}).

We have ∑
x

pX(x) = 1

and for any set S of possible values of X, we have

P (X ∈ S) =
∑
x∈S

pX(x).

We define the expected value (also called the expectation or the mean) of a discrete
random variable X, with PMF pX , by

E(X) =
∑
x

xpX(x).

The expected value of the random variable g(X) is given by

E(g(X)) =
∑
x

g(x)pX(x).

The variance var(X) (or D(X)) of a random variable X is defined by

var(X) = E((X − E(X))2) = E(X2)− (E(X))2.

Its square root is denoted by σX and is called the standard deviation.

The Bernoulli Random Variable

The PMF of X which is a Bernoulli random variable with parameter p is given by

pX(k) = P (X = k) =


1− p, x = 0

p, x = 1

0, otherwise

.

E(X) = p, var(X) = p(1− p).
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The Binomial Random Variable

The PMF of X which is a Binomial random variable with parameters n and p consist of
the binomial probabilities that are given by

pX(k) = P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

E(X) = np, var(X) = np(1− p).

The Geometric Random Variable

The PMF of X which is a geometric random variable with parameter p is given by

pX(k) = P (X = k) = (1− p)k−1p, k = 1, 2, . . . .

E(X) =
1

p
, var(X) =

1− p
p2

.

The Poisson Random Variable

A Poisson random variable has a PMF of X given by

pX(k) = P (X = k) = e−λ
λk

k!
, k = 0, 1, . . . ,

where λ is a positive parameter characterizing the PMF.
The Poisson PMF with parameter λ is a good approximation for a binomial PMF with

parameters n and p, i.e.

e−λ
λk

k!
≈ n!

k!(n− k)!
pk(1− p)n−k, if k < n,

provided λ = np, n is very large, and p is very small.

E(X) = λ, var(X) = λ.

Let X and Y be discrete random variables associated with the same experiment.

• The joint PMF pX,Y of X and Y is defined by

pX,Y (x, y) = P (X = x, Y = y).

• The marginal PMFs of X and Y can be obtained from the joint PMF, using the
formulas

pX(x) = P (X = x) =
∑
Rx

pX,Y (x, y) and pY (y) = P (Y = y) =
∑
Ry

pX,Y (x, y)

where Rx denotes the set of all points in the range of (X,Y ) for which X = x and
Ry denotes the set of all points in the range of (X,Y ) for which Y = y.
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• If the marginal probability distribution of the discrete random variable X has the
probability mass function pX(x), then

E(X) =
∑
x

xpX(x) =
∑
x

x(
∑
Rx

pX,Y (x, y)) =
∑
R

xpX,Y (x, y)

and
var(X) =

∑
x

(x− E(X))2pX(x) =
∑
R

(x− E(X))2pX,Y (x, y)

where R denotes the set of all points in the range of (X,Y ).

• Given discrete random variables X and Y with joint probability mass function
pX,Y (x, y) the conditional probability mass function of Y given X = x is

pY |{X=x}(y) =
pX,Y (x, y)

pX(x)
for pX(x) > 0.

• A function g(X,Y ) of X and Y defines another random variable, and

E(g(X,Y )) =
∑
x

∑
y

g(x, y)pX,Y (x, y).

If g is linear, of form aX + bY + c, we have

E(aX + bY + c) = aE(X) + bE(Y ) + c.

2.2 Continuous Random variables

A random variable X is called continuous if there is a nonnegative function ϕX , called
probability density function of X, or PDF for short, such that

P (X ∈ B) =

∫
B
ϕX(x) dx,

for every subset B of the real line. We have

P (a ≤ X ≤ b) =

∫ b

a
ϕX(x) dx, P (X = a) =

∫ a

a
ϕX(x) dx = 0,

∫ ∞
−∞

ϕX(x) dx = P (−∞ < X <∞) = 1.

Let X be a continuous random variable with PDF ϕX .

• The expectation of X is defined by

E(X) =

∫ ∞
−∞

xϕX(x) dx.

6



• The expected values rule for a function g(X) has the form

E(g(X)) =

∫ ∞
−∞

g(x)ϕX(x) dx.

• The variance of X is defined by

var(X) = E((X − E(X))2) =

∫ ∞
−∞

(x− E(X))2ϕX(x) dx.

• We have
0 ≤ var(X) = E(X2)− (E(X))2.

• If Y = aX + b, where a and b are given scalars, then

E(Y ) = aE(X) + b, var(Y ) = a2 var(X).

The cumulative distribution function (CDF for short) FX of a random variable
X is defined by

FX(x) = P (X ≤ x), for all x,

and has the following properties.

• FX is monotonically non-decreasing:

if x ≤ y then FX(x) ≤ FX(y).

• FX(x) tends to 0 as x→ −∞ and to 1 as x→∞.

• If X is discrete then FX(x) is a piecewise constant function of x.

• If X is continuous then FX(x) is a continuous function of x.

• If X is discrete and takes integer values, the PMF and CDF can be obtained from
each other by summing or differencing:

FX(k) =
k∑

i=−∞
pX(i),

pX(k) = P (X ≤ k)− P (X ≤ k − 1) = FX(k)− FX(k − 1),

for all integer k.

• If X is continuous, the PDF and CDF can be obtained from each other by integration
or differentiation:

FX(x) =

∫ x

−∞
ϕX(t) dt, ϕX(x) =

dFX
dx

(x).

(The second equality is valid for those x at which the PDF is continuous.)
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Let X and Y be jointly continuous random variables with joint PDF ϕX,Y .

• The joint PDF is used to calculate probabilities:

P ((X,Y ) ∈ B) =

∫∫
(x,y)∈B

ϕX,Y (x, y) dx dy.

• The marginal PDFs of X and Y can be obtained from the joint PDF, using the
formulas

ϕX(x) =

∫ ∞
−∞

ϕX,Y (x, y) dy, ϕY (y) =

∫ ∞
−∞

ϕX,Y (x, y) dx.

• The joint CDF is defined by FX,Y (x, y) = P (X ≤ x, Y ≤ y), and determines the
joint PDF through the formula

ϕX,Y (x, y) =
∂2FX,Y
∂x∂y

(x, y),

for every (x, y) at which the joint PDF is continuous.

• Given continuous random variables X and Y with joint probability density function
ϕX,Y (x, y) the conditional probability density function of Y given X = x is

ϕY |{X=x}(y) =
ϕX,Y (x, y)

ϕX(x)
.

• A function g(X,Y ) of X and Y defines a new random variable, and

E(g(X,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)ϕX,Y (x, y) dx dy.

If g is linear, of the form aX + bY + c, we have

E(aX + bY + c) = aE(X) + bE(Y ) + c.

The Exponential Random Variable X : E(λ)

For λ > 0,

ϕX(x) =

{
λe−λx, x ≥ 0

0, otherwise
, FX(x) =

{
1− e−λx, x ≥ 0

0, otherwise
.

E(X) =
1

λ
, var(X) =

1

λ2
.
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The Normal Random Variable X : N (µ, σ2)

For σ > 0, −∞ < µ <∞

ϕX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R.

P{a < X < b} = Fx(b)− FX(a) =

∫ b

a

1√
2πσ2

e−
(x−µ)2

2σ2 dx.

E(X) = µ, var(X) = σ2.

Special case: Standard Normal random variable X∗ : N (0, 1):

ϕX∗(x) =
1√
2π
e−

x2

2 , x ∈ R.

Φ(x) =

∫ x

0

1√
2π
e−

x2

2 dx.

FX∗(x) = 0.5 + Φ(x)

1. Φ(0) = 0

2. Φ(−x) = −Φ(x)

3. Φ(x) = 1
2 , for x ≥ 5

4. Φ(x) ≈ 1
2 for 3.5 ≤ x ≤ 5

Proposition 2.1. Let Z be a standard normal random variable, let µ ∈ R, and let σ2 > 0.
Then the random variable

X = σZ + µ

is a normal random variable with parameters µ and σ2.

The Uniform Random Variable X : U(a, b)

For a < b,

ϕX(x) =

{
1
b−a , a < x < b

0, otherwise
, FX(x) =


0, x ≤ a
x− a
b− a

, a < x ≤ b

1, x > b

.

E(X) =
a+ b

2
, var(X) =

(b− a)2

12
.
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2.3 Central Limit Theorem

Theorem 2.1. Let X1, X2, . . . be a sequence of independent, identically distributed random
variables, each with mean µ and variance σ2. Then the distribution of

X1 +X2 + · · ·+Xn − nµ
σ
√
n

tends to the standard normal as n→∞. That is,

P

(
X1 +X2 + · · ·+Xn − nµ

σ
√
n

≤ a
)
→ 1√

2π

∫ a

−∞
e−

x2

2 dx

as n→∞.

De Moivre-Laplace Formula

Theorem 2.2. Consider a sequence of Bernoulli trials with probability p of success. Let
Sn, n ∈ N, denote the number of successes in the first n trials. For any a, b ∈ R, with
a < b,

lim
n→∞

P
{
a <

Sn − np√
npq

< b
}

=
1√
2π

∫ b

a
e−

1
2
x2dx = Φ(b)− Φ(a).

Remark 2.1. De Moivre-Laplace theorem is a special case of the Central Limit Theorem.
It is useful in the cases when one has the binomial random variable with n large. More
precisely, when n is large and np ≥ 10 binomial random variable can be approximated by
normal random variable.

2.4 Exercises

1. Consider the following joint probability density function

ϕX,Y (x, y) =

{
c e−(2x+3y), x ≥ 0, y ≥ 0,

0, otherwise.

Determine the value of c and then determine the marginal probability density func-
tion of X and P{X > 1/2 and Y > 1/3}.
Solution: Since

∫∞
−∞

∫∞
−∞ ϕX,Y (x, y) = 1 we have

1 =

∫ ∞
0

∫ ∞
0

c e−(2x+3y) dy dx = c

∫ ∞
0

e−2x
∫ ∞
0

e−3ydy dx

=
c

3

∫ ∞
0

e−2x(e0 − e−∞) dx =
c

2 · 3
(e0 − e−∞) =

c

6
.

It follows that c = 6.

ϕX(x) =

∫ ∞
−∞

ϕX,Y (x, y) dy =

∫ ∞
0

6 e−(2x+3y)dy = 2 e−2x, x ≥ 0

and ϕX(x) = 0, for x < 0.

P{X >
1

2
and Y >

1

3
} =

∫ ∞
1/2

∫ ∞
1/3

6 e−(2x+3y)dy dx = 6
1

6
e−2 = e−2.
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2. At noon on a weekday, we begin recording new call attempts at a telephone switch.
Let X denote the arrival time of the first call, as measured by the number of seconds
after noon. Let Y denote the arrival time of the second call. In the most common
model used in the telephone industry, X and Y are continuous random variables
with joint probability density function

ϕX,Y (x, y) =

{
λ2e−λy, 0 ≤ x < y,

0, otherwise,

where λ > 0 calls/second is the average arrival rate of telephone calls. Find the
marginal probability density function of Y and the conditional probability density
function ϕY |{X=x}(y).
Solution: For x < 0, ϕX(x) = 0. For x ≥ 0 we have

ϕX(x) =

∫ ∞
x

λ2e−λy dy = λe−λx.

Also,

ϕY (y) =

∫ y

0
λ2e−λy dx = λ2ye−λy, for y > 0

and ϕY (y) = 0, for y ≤ 0. Then

ϕY |{X=x}(y) =
ϕX,Y (x, y)

ϕX(x)
=

{
λe−λ(y−x), y > x

0, otherwise.

3. On a multiple-choice exam with three possible answers for each of the five questions,
what is the probability that a student would get four or more correct answers just
by guessing?

4. Let X : N (7, 4) be the random variable that represents a lifetime of expensive devise.
If the device breaks during the first two year the amount of x dinars is paid to insurer,
while if it breaks during the third or the fourth year the amount of 1

2x dinars is paid
to the insurer. The insurance is paid only if the lifetime of the device is less then
4 years. Find the value for x such that the expected payment per device is 5000
dinars.
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3 Conditional Expectation

Let (Ω,F , P ) be a probability space, that is, Ω is a set (finite or infinite), F is a σ−field
and P is a probability measure. σ−field F is a family of subsets of Ω satisfying the three
properties:

(1) ∅,Ω ∈ F

(2) A ∈ F ⇒ Ac ∈ F

(3) An ∈ F (n = 1, 2, . . .) ⇒
⋃∞
n=1An ∈ F .

A map X : Ω → Rn is a random variable on (Ω,F , P ) if X−1(B) ∈ F , for B ∈ Bn. X is
the random variable if and only if X is an F−measurable function on Ω.
If X is a simple random variable then

X(w) =
∑

xkIAk(w), Ai = {w|X(w) = xi}.

F(X) := {X−1(B), B ∈ Bn}

is a σ−algebra.
If Y = Φ(X) then Y is F(X)− measurable.

We know that

P (A|B) =
P (A ∩B)

P (B)
⇒ P (AB) = P (A)P (B|A)

• Let B ∈ F . Then

E(X|B) =
1

P (B)

∫
B
X dP

is a number.

• Let X and Y be two random variables.

– If Y is a simple random variable then

E(X|Y ) :=


E(X|A1), on A1

...
...

E(X|Am), on Am

=


1

P (A1)

∫
A1
X dP, on A1

...
...

1
P (Am)

∫
Am

X dP, on Am

is a random variable.
E(X|Y ) is F(Y )−measurable because E(X|Y ) is a function of Y .∫

A
X dP =

∫
A
E(X|Y )dP, for all A ∈ F(Y )

– If Y is arbitrary random variable conditional expectation is each F(Y )−measurable
random variable which satisfy∫

A
X dP =

∫
A
E(X|Y )dP, for all A ∈ F(Y ).
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• Let V ⊆ F be a σ−algebra contained in F . Then the conditional expectation of the
random variable X given V is a V−measurable random variable such that∫

A
X dP =

∫
A
E(X|V)dP, for all A ∈ V.

If X is integrable random variable then for each σ−algebra V, V ⊆ F conditional expec-
tation E(X|V) exists and is unique. We have:

1. E(X|Y ) = E(X|F(Y )),

2. E(X|F0) = E(X), F0 = {∅,Ω},

3. E(E(X|V)) = E(X).

Some properties of a conditional expectation:

1. If X is V−measurable then E(X|V) = X a.s. because the conditional expectation
given the full σ−algebra, corresponds to complete information about events.

2. a, b ∈ R E(aX + bY |V) = aE(X|V) + bE(Y |V) a.s.

3. If X is V−measurable and XY is integrable then E(XY |V) = XE(Y |V) a.s.

4. If X is independent to V then E(X|V) = E(X) a.s.

5. If X ≤ Y a.s. ⇒ E(X|V) ≤ E(Y |V) a.s.

Let
⋃n
i=1Ai = Ω, Ai ∩Aj = ∅, i 6= j, P (Ai) > 0, for each i = 1, . . . , n. Let F(A1, . . . , An)

be a σ−algebra generated by A1, . . . , An. Then

E
(
X|F(A1, . . . , An)

)
=


E(X|A1), on A1

...
...

E(X|An), on An

E
(
X|F(A1, . . . , An)

)
= E(X|F(Y )) = E(X|Y )

Theorem 3.1 (Jensen’s Inequality). Let ϕ : R→ R be a convex function and let ξ be an
integrable random variable on a probability space (Ω,F , P ) such that ϕ(ξ) is also integrable.
Then

ϕ
(
E(ξ|G)

)
≤ E

(
ϕ(ξ)|G

)
a.s.

for any σ−field G on Ω contained in F .

3.1 Exercises

1. A prisoner is trapped in a cell containing three doors. The first door leads to a
tunnel that returns him to his cell after two days of travel. The second leads to a
tunnel that returns him to his cell after three days of travel. The third door leads
immediately to freedom.
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(a) Assuming that the prisoner will always select doors 1, 2, and 3 with probabilities
0.5, 0.3, 0.2, what is the expected number of days until he reaches freedom?

(b) Assuming that the prisoner is always equally likely to choose among those doors
that he has not used, what is the expected number of days until he reaches
freedom? (In this version, for instance, if the prisoner initially tries door 1,
then when he returns to the cell, he will now select only from doors 2 and 3.)

2. Suppose that 2 batteries are randomly chosen without replacement from the following
group of 12 batteries: 3 new, 4 used (working) and 5 defective. Let X denote the
number of new batteries chosen and let Y denote the number of used batteries
chosen. Find E(X) and E(X|Y ).

3. Each day a system is gathering a certain amount of data and sums the money earned
that day. Then a program classifies the previous day into a category. Each day can
be classified as a Type i, i ∈ {1, . . . , k}. It is known that probability the day is
classified as Type i is pi and that

k∑
i=1

p2i = 0.5.

Also, the expected amount of money earned during the Type i day is ln
(
a
epi

)
millions,

a > 1. What is the expected amount of money earned on arbitrary chosen day?

4. Suppose that a couple after n year of marriage can have at most n children. Let X
denote a random variable which represents the number of children after exactly 3
years of marriage,

X :

(
0 1 2 3

1/6 1/3 1/3 1/6

)
.

If Y is a number of female children after exactly 3 years of marriage, find E(X|F(Y )).

5. Milan and Uroš play a dice game as follows. Each of them throws a dice, inde-
pendently of the other one. If the sum is 5, 6 or 7, Milan wins. Otherwise, Uroš
wins.

(a) Find a probability that Milan wins.

(b) What is the probability that Milan’s throw resulted in 3, if it is knows that
Milan won.

6. Suppose that Milan and Uroš play a series of games explained above. The overall
winner is the first player to have won two more games than the other. Find the
expected number of games played.
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4 Stochastic processes

A stochastic process {X(t), t ∈ I} is a collection of random variables. That is, for each
t ∈ I, X(t) is a random variable. The index t is often interpreted as time and, as a result,
we refer to X(t) as the state of the process at time t.

The set I is called the index set of the process. When I is a countable set the stochastic
process is said to be a discrete-time process. If I is an interval of the real line, the stochastic
process is said to be a continuous-time process. The state space of a stochastic process is
defined as the set of all possible values that the random variables X(t) can assume. Thus,
a stochastic process is a family of random variables that describes the evolution through
time of some (physical) process.

Definition 4.1. Suppose that with each element ω of a sample space S of some ran-
dom experiment E, we associate a function X(t, ω), where t belongs to I ⊂ R. The set
{X(t, ω), t ∈ I} is called a stochastic (or random process).

The function X(t, ω) is a random variable for any particular value of t.

Definition 4.2. The distribution function of order k of the stochastic process {X(t), t ∈ I}
is the joint distribution function of the random vector X(t1), . . . , X(tk)

Ft1,...,tk(x1, . . . , xk) = P{X(t1) < x1, . . . , X(tn) < xn}.

Definition 4.3. The mean E[X(t)] of an s.p. {X(t), t ∈ I} at time t is denoted by
mX(t). Moreover, the autocorrelation function and the autocovariance function of
the process at the point t1, t2 are defined, respectively, by

RX(t1, t2) = E[X(t1)X(t2)],

KX(t1, t2) = E[X(t1)X(t2)]−mX(t1)mX(t2).

The variance of the process at time t is

V ar[X(t)] = KX(t, t).

The autocovariance and autocorrelation functions indicate the rate of change of the sample
functions of a stochastic process.

Definition 4.4. If the random variables X(t4)−X(t3) and X(t2)−X(t1) are independent
∀ t1 < t2 < t3 < t4, we say that the stochastic process {X(t), t ∈ I} is a process with
independent increments.

Definition 4.5. If the random variables X(t2 +s)−X(t1 +s) and X(t2)−X(t1) have the
same distribution function for all s, {X(t), t ∈ I} is said to be a process with stationary
increments.

Definition 4.6. We say that the stochastic process {X(t), t ∈ I} is stationary, or
strict-sense stationary (SSS), if its distribution function of order n is invariant under
any change of origin:

Ft1,...,tn(x1, . . . , xn) = Ft1+s,...,tn+s(x1, . . . , xn)

for all s, n and t1, . . . , tn.
A stochastic process is stationary if the randomness does not vary with time.
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Definition 4.7. We say that the stochastic process {X(t), t ∈ I} is wide-sense station-
ary (WSS) if mX(t) = m and

KX(t1, t2) = KX(t2 − t1), for all t1, t2 ∈ I.

A stochastic process is wide sense stationary if the expected value is constant with time
and the autocovariance function depends only on the time difference between two random
variables. Since the expected value is constant, then the statement that autocovariance
function depends only on the time difference between two random is equivalent to state-
ment that the autocorrelation function depends only on the time difference between two
random

variables

Definition 4.8. We say that the random vector (X1, . . . , Xn) has a multi-normal dis-
tribution if each random variable Xk can be expressed as a linear combination of in-
dependent random variables Z1, . . . , Zm, where Zj : N (0, 1), for j = 1, . . . ,m. That is,
if

Xk = µk +

m∑
j=1

ckjZj , for k = 1, . . . , n

where µk is a real constant, for all k.

Definition 4.9. A stochastic process {X(t), t ∈ I} is said to be a Gaussian process if
the random vector (X(t1), . . . , X(tn)) has a multi-normal distribution, for any n and for
all t1, . . . , tn.

Proposition 4.1. If a Gaussian process {X(t), t ∈ I} is such that its mean mX(t) is a
constant mX and if its autocovariance function KX(t, t+ s) depends only on s, then it is
stationary (in the strict sense).

4.1 Exercises

1. Let W be an exponential random variable with probability density function

ϕW (w) =

{
e−w, w ≥ 0

0, otherwise
.

(a) Find the cumulative distribution function FXt of the time delayed ramp process
Xt = t−W.

(b) Find the autocovariance function of a process Xt.

2. Consider two independent random variable, X and Y , where X : E(1) and

ϕ(X,Y )(x, y) =

{
1
2e
−x, x ≥ 0, y ∈ (1, 3),

0, otherwise.

Find autocovariance function of a stochastic process Nt = X(tX + Y ).
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3. Consider the following joint probability density function

ϕX,Y (x, y) =

{
Cye−x, x, y ∈ (0, 1),

0, x, y /∈ (0, 1).

(a) Determine the value of C and then determine the marginal probability density
functions for X and Y .

(b) Determine the autocovariance function of stochastic process Xt = X + tY.

17



5 Markov Chains

We consider a stochastic process {Xn, n = 0, 1, 2, . . .} that takes on a finite or countable
number of possible values. Unless otherwise mentioned, this set of possible values of the
process will be denoted by the set of nonnegative integers {0, 1, 2, . . .}.

If Xn = xi, then the process is said to be in state i at time n. We suppose that
whenever the process is in state i, there is a fixed probability pij that it will next be in
state j. That is, we suppose that

P{Xn+1 = xj |Xn = xi, Xn−1 = xin−1 , . . . , X1 = xi1 , X0 = xi0} = pij (1)

for all states i0, i1, . . . , in−1, i, j and all n ≥ 0. Such a stochastic process is known as a
Markov chain.

Equation (1) may be interpreted as stating that, for a Markov chain, the conditional
distribution of any future state Xn+1 given the past states X0, X1, . . . , Xn−1 and the
present state Xn, is independent of the past states and depends only on the present state.

The value pij (one-step transition probability) represents the probability that the pro-
cess will, when in state i, next make a transition into state j. Since probabilities are
nonnegative and since the process must make a transition into some state, we have that

pij ≥ 0, i, j ≥ 0,
∞∑
j=0

pij = 1, i = 0, 1, . . . .

One-step transition probability pn,n+1
ij is defined by

pn,n+1
ij = P{Xn+1 = xj |Xn = xi}.

If pn,n+1
ij does not depend of n Markov chain is homogeneous.
The n−step transitional probability pij(n) is the probability that a process in state i

will be in state j after n additional transitions

pij(n) = P{Xm+n = xj |Xm = xi}.

The matrix of one-step transition probabilities pij is denoted by P

P = [pij ]i,j

The matrix of n−step transitional probabilities is given by

Pn = [pij(n)]i,j .

pi(n) = P{Xn = xi}

p(0) = [p1(0), p2(0), . . . , pN (0)]

For a fixed n we have

Xn :

(
x1 x2 . . . xN

p1(n) p2(n) . . . pN (n)

)
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The Chapman–Kolmogorov equations provide a method for computing these n-
step transition probabilities. These equations are

pij(n+m) =
N∑
k=0

pik(n)pkj(m), P (n+m) = P (n)P (m).

p(k) = p(0) · P k.

For a finite Markov chain with transition matrix P , the n−th step transition matrix is

P (n) = Pn.

If the state p(k) does not depend of k the chain is stationary.
If there exists n0 ∈ N so that Pn0 = Pn0 has all positive elements the chain is ergodic.
State xj is said to be accessible (dostižno) from state xi if pij(n0) > 0, for some n0.
The state xi is said to be recurrent (apsorbujuće) if pii = 1 (starting in state xi, the

process will ever reenter state xi.)
The state xi is said ti be transient (povratno) if pii > 0.
For a finite Markov chain with initial state probability vector p(0), the limiting state

probabilities, when they exist, are defined to be the vector

p∗ = lim
n→∞

p(n).

We have
p∗j = lim

n→∞
pij(n)

The j−th element, p∗j is the probability the system will be in state j in the distant future.
For an ergodic Markov chain limn→∞ pij(n) exists and is independent of i. Then we have

p∗ = p∗P

or
[p∗1 p

∗
2 . . . p

∗
m] = [p∗1 p

∗
2 . . . p

∗
m]P

m∑
j=1

p∗j = 1

Example 5.1. [A Communications System] Consider a communications system which
transmits the digits 0 and 1. Each digit transmitted must pass through several stages, at
each of which there is a probability p that the digit entered will be unchanged when it
leaves. Letting Xn denote the digit entering the n−th stage, then {Xn, n = 0, 1, . . .} is a
two-state Markov chain having a transition probability matrix

P =

[
p 1− p

1− p p

]
.

Example 5.2. On any given day Gary is either cheerful (C), so-so (S), or glum (G). If he
is cheerful today, then he will be C, S, or G tomorrow with respective probabilities 0.5, 0.4,
0.1. If he is feeling so-so today, then he will be C, S, or G tomorrow with probabilities 0.3,
0.4, 0.3. If he is glum today, then he will be C, S, or G tomorrow with probabilities 0.2, 0.3,
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0.5. Letting Xn denote Gary’s mood on the n−th day, then {Xn, n ≥ 0} is a three-state
Markov chain (state 0 = C, state 1 = S, state 2 = G) with transition probability matrix

P =

 0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

 .
5.1 Exercises

1. Ana is doing data analysis and she is receiving data through a communication system.
But, she is aware that digit entered might be changed in the process and based of
the prediction analysis she knows which digit is unchanged/changed. Previously, she
received a transition probability matrix P for a three state Markov chain

P =

 a b 0.1
0.3 0.4 0.3
0.2 0.3 0.5

 .
Ana knows that, in the long run, 25% of the time system spends in the state 2. Find
constants a and b, if possible.

2. The diffusion of electrons and holes across a potential barrier in an electronic devise
is modeled as follows. There are m black balls (electrons) in urn A and m white
balls (holes) in urn B. We perform independent trials, in each of which a ball is
selected at random from each urn and the selected ball from urn A is placed in urn
B, while that from urn B is placed in A. Consider the Markov chain representing
the number of black balls in urn A immediately after the n−th trial.

(a) Describe the one-step transition probabilities of the process.

(b) Suppose m = 2. Compute the long-run fraction of time when urn A does not
contain a black ball.

3. In working with a particular gene for fruit flies, geneticists classify an individual
fruit fly as dominant, hybrid or recessive. In running an experiment, an individual
fruit fly is crossed with a hybrid, then the offspring is crossed with a hybrid and so
forth. The offspring in each generation are recorded as dominant, hybrid or recessive.
The probabilities the offspring are dominant, hybrid or recessive depends only on
the type of fruit fly the hybrid is crossed with rather than the genetic makeup of
previous generations. The offspring of a dominant individual crossed with a hybrid
are dominant 50% of the time and hybrid the other 50%. The offspring of a hybrid
crossed with a hybrid are dominant 25%, hybrid 50% and recessive 25%, while the
offspring of a recessive crossed with a hybrid are hybrid 50% and recessive 50%.

(a) Find the transition matrix for this problem.

(b) What is the probability the third generation offspring is dominant given the first
generation offspring is recessive?

(c) If the population of fruit flies initially is 20% dominant, 50% hybrid and 30%
recessive, what percentage of the population is dominant after 3 generations?
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4. The social status of the n−th generation of some family is given by the Markov chain
Xn, n ∈ N0. Some family can belong to one of three social classes: 1 - lower, 2 -
middle and 3 - upper. The transition probability matrix which describes the change
in classes is given by

P =

 0.7 0.2 0.1
0.3 0.5 0.2
0.2 0.4 0.4

 .
(a) Find a probability that a person whose parents are in the middle class ends up

in the upper class and that the children of that person are in the lower class.

(b) Determine a probability that the children of the person whose parents are in the
middle class end up in the lower class?

5. Two girls and two boys are playing with the ball. Each boy will toss a ball to the
other boy with probability 1/2, and to each of the girls with probability 1/4. Each
girl will toss the ball to each boy with probability 1/2 and won’t toss the ball to the
other girl. If the game last for a long time, how often will each of them receive the
ball?

6. Consider a communications system which transmits the digits 0 and 1. Each digit
transmitted must pass through several stages, at each of which there is a probability
p ∈ (0, 1) that the digit entered will be unchanged when it leaves. Let Xn denote
the digit entering the n−th stage.

(a) Find the state transition probability matrix.

(b) Find initial state vector such that the Markov chain {Xn, n ≥ 0} is stationary.

(c) Find P{Xn+2 = 1|Xn = 1}.

7. Two gamblers play the following game. A fair coin is flipped. If the outcome is heads,
player A pays player B 1 dollar, and if the outcome is tails player B pays player A
1 dollar. The game is continued until one of the players goes broke. Suppose that
initially player A has 1 dollar and player B has 2 dollars, so a total of 3 dollars is up
for grabs. Let Xn denote the number of dollars held by player A after n trials.

(a) Find the expected number of flips until one of the players goes broke.

(b) Show that Xn is a Markov chain and find the one-step transition probabilities.

(c) What is the probability that a game has stopped after only one flip of the coin?

(d) Find the two-step transition probabilities P [Xn+2 = i|Xn = i], i = 1, 2.

8. Peter takes the course Stochastic Processes this semester on Tuesday, Thursday and
Friday. The classes start at 10 am. Peter is used to work until late in the night and
consequently, he sometimes misses the class. His attendance behavior is such that
he attends class depending only on whether or not he went to the latest class. If he
attended class one day, then he will go to class next time it meets with probability
1/2. If he did not go to one class, then he will go to the next class with probability
3/4.
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(a) Describe the Markov chain that models Peter’s attendance. What is the prob-
ability that he will attend class on Thursday if he went to class on Friday?

(b) Find the probability that Peter attends a class?

(c) Suppose the course has 30 classes altogether. Give an estimate of the number
of classes attended by Peter and explain it.

9. A game is played as follows. The integers N ≥ 2 and s ≤ N−1 are randomly chosen.
There are two types of balls in the box: white and black. Initially, the box is filled
with N balls. The number of white balls is s. Trials are performed as follows. In
each trial one ball is selected. If that ball is white, one returns the selected ball in
the box. If the ball is black, one returns the selected ball and adds white ball in the
box. Consider the Markov chain representing the number of white balls in the box
after the n−th trial.

(a) Find the one and two step transition probabilities of the Markov chain.

(b) The game ends when the probability that a number of white balls in the box
after d trials increases by d is not greater then 1/30. What is the minimum
number of trials necessary for that to happen if N = 2, s = 1?

10. In some countries exists a limit on number of children the couple can have in mar-
riage. Suppose that a limit is 4 i.e. a couple cannot have more that 4 children in
marriage. Let Xn denote the number of children in marriage after n years. Suppose
that the number of children cannot decrease. It is known that the number of children
after one year will stay the same with probability 0.5, except in the case when there
is 4 children. If in the end of one year the number of children is k, k = 0, 1, 2, then
at the end of the next year the number of children will be k + 1 with probability
1

k+2 . If the couple has a child, the number of children will increase by 2 after 2 year
with probability 1/4.

(a) Find a one-step transition probability matrix of a Markov chain {Xn}.
(b) Is Markov chain {Xn} ergodic?
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6 Poisson process

6.1 Counting process

Definition 6.1. A stochastic process {Xt, t ≥ 0} is said to be a counting process if Xt

represents the total number of events that have occurred up to time t. A counting process
must satisfy

1. Xt ≥ 0

2. Xt is integer valued

3. If s < t, Xs ≤ Xt

4. For s < t, Xt − Xs equals the number of events that have occured in the interval
(s, t].

λ is called the rate of the process.

A counting process is said to possess independent increments if the numbers of events
that occur in disjoint time intervals are independent. A counting process is said to possess
stationary increments if the distribution of the number of events that occur in any interval
of time depends only on the length of the time interval. In other words, the process
has stationary increments if the number of events in the interval (s, s + t) has the same
distribution for all s.

6.2 Definition of the Poisson process

Definition 6.2. The counting process {Xt, t ≥ 0} is said to be a Poisson process with
rate λ, λ > 0 if

1. X0 = 0.

2. The process has independent increments.

3. The number of events in any interval of length t is Poisson distributed with mean
λt. That is, for all s, t ≥ 0

P{Xs+t −Xs = n} = e−λt
(λt)n

n!
, n = 0, 1, 2, . . . .

From condition 3. follows that a Poisson process has stationary increments. Also, for
s = 0, Xt −X0 = Xt and

P{Xt = n} =
(λt)n

n!
e−λt.

So, Xt : P(λt) and E(Xt) = λt.
But, it is not at all clear how we would determine that condition 3. from the Definition

6.2 is satisfied, and for this reason an equivalent definition of a Poisson process would be
useful.

Definition 6.3. The counting process {Xt, t ≥ 0} is said to be a Poisson process with
rate λ, λ > 0 if
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1. X0 = 0

2. The process has stationary and independent increments

3. P{Xh = 1} = λh+ o(h)

4. P{Xh ≥ 2} = o(h)

Theorem 6.1. Definitions 6.2 and 6.3 are equivalent.

Remark 6.1. The explicit assumption that the process has stationary increments can be
eliminated from Definition 6.3 provided that we change assumptions 3. and 4. to require
that for any t the probability of one event in the interval (t, t + h) is λh + o(h) and the
probability of two or more events in that interval is o(h).

Definition 6.4. The counting process {Xt, t ≥ 0} is said to be a Poisson process with
rate λ, λ > 0 if

1. X0 = 0

2. The process has independent increments

3. P{Xt+h −Xt = 1} = λh+ o(h), h→ 0

4. P{Xt+h −Xt ≥ 2} = o(h), h→ 0

6.3 Interarrival and waiting time distributions

Let {Xt, t ≥ 0} be a Poisson process with a rate λ and

• T1− denote the time of the first event

• . . .

• Tn, n ≥ 1− denote the time between the (n− 1)st and nth event.

The sequence {Tn, n ≥ 1} is called the sequence of interarrival times (niz vremena
zadržavanja u datom stanju).

Distribution of the Tn?
The event {T1 > t} takes place if and only if no event of the Poisson process occur in

the interval [0, t] and thus

P{T1 > t} = P{Xt = 0} = e−λt

FT1(t) = P{T1 < t} = 1− P{T1 ≥ t} = 1− P{T1 = t} − P{T1 > t}

FT1(t) = 1− P{Xt = 0} = 1− (λt)0

0!
e−λt = 1− e−λt, t > 0

T1 : E(λ)

P{T2 > t|T1 = s} = P{0 events in (s, s+ t]|T1 = s}
= P{0 events in (s, s+ t]} = e−λt (independent, stationary increments)

T2 : E(λ)
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Theorem 6.2. Tn, n = 1, 2, . . . are independent identically distributed exponential random
variables having mean 1/λ.

Sn =
n∑
k=1

Tk the arrival time of the nth event or waiting time until the nth event

P{Xt ≥ n} = P{Sn ≤ t}

ϕSn(t) = λe−λt
(λt)n−1

(n− 1)!
, t > 0

6.4 Properties of Poisson process

{Xt, t ≥ 0} is Poisson process. Then

Xt −Xs : P(λ(t− s)), λ > 0

If s = 0 then
Xt : P(λt)⇒ E(Xt) = D(Xt) = λt.

KX(t, s) = λmin{t, s}, t, s ≥ 0

Poisson process is Markov Process.

Consider a Poisson process {Nt, t ≥ 0} having rate λ, and suppose that each time an
event occurs it is classified as either a type I or a type II event. Suppose further that each
event is classified as a type I event with probability p or a type II event with probability
1− p, independently of all other events.

For example, suppose that customers arrive at a store in accordance with a Poisson
process having rate λ and suppose that each arrival is male with probability 1/2 and
female with probability 1/2. Then a type I event would correspond to a male arrival and
a type II event to a female arrival.
Let N1t and N2t denote respectively the number of type I and type II events occurring in
[0, t]. Note that Nt = N1t +N2t.

Proposition 6.1. {N1t, t ≥ 0} and {N2t, t ≥ 0} are both Poisson processes having respec-
tive rates λp and λ(1− p). Furthermore, the two processes are independent.

We know that if each event of a Poisson process is independently classified as a type I
event with probability p and as a type II event with probability 1 − p then the counting
processes of type I and type II events are independent Poisson processes with respective
rates λp and λ(1−p). Suppose now, however, that there are k possible types of events and
that the probability that an event is classified as a type i event, i = 1, . . . , k, depends on
the time the event occurs. Specifically, suppose that if an event occurs at time y then it
will be classified as a type i event, independently of anything that has previously occurred,
with probability Pi(y), i = 1, . . . , k where

∑k
i=1 Pi(y) = 1. Now we have

Proposition 6.2. If Xi(t), i = 1, . . . , k, represents the number of type i events occurring
by time t then Xi(t), i = 1, . . . , k, are independent Poisson random variables having means

E[Xi(t)] = λ

∫ t

0
Pi(s)ds.
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6.5 Nonhomogeneous Poisson process

Definition 6.5. The counting process {Xt, t ≥ 0} is said to be a nonstationary or
nonhomogeneous Poisson process with intensity function λ(t), t ≥ 0 if

(i) X0 = 0

(ii) {Xt, t ≥ 0} has independent increments

(iii) P{Xt+h −Xt = 1} = λ(t)h+ o(h), h→ 0

(iv) P{Xt+h −Xt ≥ 2} = o(h), h→ 0

If we let

m(t) =

∫ t

0
λ(s)ds,

then it can be shown

P{Xs+t −Xt = n} = e−(m(s+t)−m(s)) (m(s+ t)−m(s))n

n!
.

That is, Xs+t −Xt is Poisson distributed with mean m(s+ t)−m(t).

6.6 Compound Poisson Processes

Definition 6.6. A Stochastic process {Xt, t ≥ 0} is said to be a compound Poisson
process if it can be represented, for t ≥ 0, by

Xt =

Nt∑
i=1

Yi,

where {Nt, t ≥ 0} is a Poisson process, and {Yi, i = 1, 2, . . .} is a family of independent and
identically distributed random variables that is independent of the process {Nt, t ≥ 0}.
Thus, if {Xt, t ≥ 0} is a compound Poisson process then Xt is a compound Poisson random
variable.

We have
E(Xt) = E(Nt)E(Y1), D(Xt) = E(Nt)E(Y 2

1 ).

6.7 Exercises

1. A geiger counter is a device to count the radioactive particles emitted by a source.
Suppose the particles arrive at the counter according to a Poisson process with rate
λ = 1000 per second. The counter fails to count a particle with probability 0.1,
independent of everything else. Suppose the counter registers four particles in 0.01
seconds. What is the probability that at least six particles have actually arrived at
the counter during this time period?
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2. Events occur according to a nonhomogeneous Poisson process whose mean value
function is given by

m(t) = t2 + 2t, t ≥ 0.

Find the intensity function of this process. What is the probability that n events
occur between times t = 4 and t = 5?

3. In good years, storms occur according to a Poisson process with rate 3 per unit time,
while in other years they occur according to a Poisson process with rate 5 per unit
time. Suppose next year will be a good year with probability 0.3. Let Nt denote the
number of storms during the first t time units of next year.

(a) Find the probability that in the first t time units of next year have occurred n
storms.

(b) Is {Nt, t ≥ 0} a Poisson process?

(c) Does {Nt, t ≥ 0} have stationary increments? Explain.

(d) If next year starts off with three storms by time t = 1, what is the probability
it is a good year?

4. The number of trains from Novi Sad to Belgrade which are late more than one hour
is described by a Poisson process with a rate one per month, while number of trains
from Novi Sad to Subotica which are late more than one hour is an independent
Poisson process with a rate 2 per month.

(a) What is the probability that at least 3 trains from Novi Sad to Belgrade are late
more then one hour during one month?

(b) What is the probability that 3 trains from Novi Sad to Belgrade and 2 trains
from Novi Sad to Subotica are late more that 1 hour during 1 month?

5. All the employees in one company use the same printer. Suppose that the times
between two consecutive print requests are independent, identically distributed ex-
ponential random variables with parameter 10 per hour. The printer needs exactly
6 seconds to print one paper.

(a) What is the probability that exactly 20 print requests will arrive between 8 : 30
i 10 : 30h?

(b) What is the probability that a print request will arrive while the previous doc-
ument containing 6 papers is not yet printed?

6. Customers arrive at the automatic teller machine in accordance with a Poisson pro-
cess with rate 10 per hour. The amount of money withdrawn on each transaction
is a random variable with mean $40 and standard deviation $50. A negative with-
drawal means that money was deposited. The machine is in use for 16 hours daily.
Approximate the probability that the total daily withdrawal is less that $7000.

7. The number of babies born is Serbia during t days is a Poisson process. On an
average, a baby is born after every 60 seconds. If it is known that in one of 10 cases
baby is not discharged from the hospital after 5 days, find the probability that in
two days period, the number of babies which are not discharged from the hospital
after 5 days is at most 2.
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8. Satellites are launched into space at times distributed according to a Poisson process
with rate 2 per year. A time that each satellite independently spends in space before
falling to the ground is exponentially distributed with mean 40 years. Find the
expected number of satellites on the ground after 20 years.

9. (a) Nikola starts each month with 80 000 dinars on the bank account. On the first
day of the month he pays the bills (amount is 10 000 dinars), on the second and
the fifteenth day of the month he goes to the supermarket. Amount of money
that he spends on those days is a random variable

X :

(
5000 7000 8000 10000
1/4 1/4 1/4 1/4

)
.

Amount of money spent on any other day is uniformly distributed in the interval
(0, 2000). Denote by Xn the total amount of money available on the n−th day
of the month. Suppose that a month has 30 days. Find the expected amount of
money available on the nth day of the month if an amount available on (n−1)st
day is known and find the expected amount of money spent on arbitrary chosen
day.

(b) Suppose that on average Nikola spends more than 1000 dinars each two days.
What is the probability that Nikola spends more than 1000 dinars less than 2
times in 3 days?
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7 Brownian Motion

Brownian motion is named after English botanist Robert Brown who discovered it. That
is the motion exhibited by a small particle which is totally immersed in a liquid or gas.

Consider the symmetric random walk, which in each time unit is equally likely to
take a unit step either to the left or to the right. That is, it is a Markov chain with
pi,i+1 = pi,i−1 = 1/2, i = 0,±1,±2, . . .. Now suppose that we speed up this process by
taking smaller and smaller steps in smaller and smaller time intervals. If we now go to
the limit in the right manner what we obtain is Brownian motion.

Suppose that each ∆t time unit we take a step of size ∆x either to the left or the right
with equal probabilities. Let X(t) denote the position at time t = n∆t. Define

Sn :=
n∑
i=1

Xi

as the number of steps to the right until t = n∆t, where

Xi :

(
0 1

1/2 1/2

)
, E(Xi) =

1

2
, D(Xi) =

1

4
, i = 1, . . . , n.

Now,
X(t) = Sn ·∆x+ (n− Sn) · (−∆x) = (2Sn − n)∆x,

D(X(t)) = D((2Sn − n)∆x) = (∆x)2D(2Sn − n) = (∆x)2 · n =
(∆x)2

∆t
· t.

Denote,
(∆x)2

∆t
= d > 0.

Since, E(Sn) = nE(X1) = n
2 and D(Sn) = nD(X1) = n

4 , we have

X(t) =
(Sn − n

2√
n
4

)√
td.

From De Moivre Laplace theorem follows

X(t) : N (0, td).

Without loss of generality take d = 1.

Definition 7.1. A stochastic process {Wt, t ≥ 0} is said to be (standard) Brownian motion
(Wiener process) process if

(i) W0 = 0

(ii) {Wt, t ≥ 0} has stationary and independent increments i.e. for each 0 < t1 < t2 <
. . . < tn−1 < tn < . . ., Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1 are independent random
variables.

(iii) Wt −Ws : N (0, t− s), t > s. Specially, if we take s = 0 we have

Wt −W0 = Wt : N (0, t), E[Wt] = 0, D[Wt] = E[W 2
t ] = t.
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Since, Wt : N (0, t) we have

P{a < Wt < b} =

∫ b

a

1√
2πt

e−
x2

2t dx.

Put,

g(x, t|y) :=
1√
2πt

e−
(x−y)2

2t .

It holds g(x− y, t|0) = g(x, t|y). We claim

P{a1 < Wt1 < b1, a2 < Wt2 < b2, . . . , an < Wtm < bn}

=

∫ b1

a1

∫ b2

a2

. . .

∫ bn

an

g(x1, t1|0)g(x2, t2 − t1|x1)g(x3, t3 − t2|x2) . . . g(xn, tn − tn−1|xn−1)dx1 . . . dxn.

The above formula follows from the theorem:

Theorem 7.1. Let Wt be Brownian motion process. Then for each n ∈ N and for each
0 = t0 < t1 < . . . < tn and for all functions f : Rn → R

E
(
f
(
Wt1 ,Wt2 , . . . ,Wtn

))
=

∫ ∞
−∞

∫ ∞
−∞

. . .

∫ ∞
−∞

f(x1, . . . , xn)g(x1, t1|0)g(x2, t2 − t1|x1) . . . g(xn, tn − tn−1|xn−1)dx1 . . . dxn.

Theorem 7.2. Let Wt be Brownian motion process. Then

KW (t, s) = min{t, s}.

Wt is Markov process.
We say that {Wt, t ≥ 0} is a Brownian motion process with drift coefficient µ and variance
parameter σ2 if

(i) W0 = 0

(ii) {Wt, t ≥ 0} has stationary and independent increments

(iii) Wt is normally distributed with mean µt and variance tσ2.

An equivalent definition is to let {Xt, t ≥ 0} be standard Brownian motion and then define

Wt = σXt + µt.

7.1 Exercises

1. Show that for any T > 0, V (t) = W (t+ T )−W (T ) is a standard Brownian motion
if W (t) is.

2. Let (Wt)t≥0 be a standard Brownian motion. Find E(W 2
4 |W2).

3. Consider a standard Brownian motion Wt and define

Xt := Wt − tW1, 0 ≤ t ≤ 1.
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(a) Find a autocovariance function KX(t, s) for a given process Xt.

(b) Does the process {Xt}0≤t≤1 has an independent increments?

4. Find
E[αWt +WtWs + βW 2

rWs|Wt], 0 < s ≤ t < r,

if Wt, t ≥ 0 is standard Brownian motion and Wt is history of Brownian motion
until time t (including time t).

5. Consider the standard Brownian motion W (t), t ≥ 0.

(a) Prove that for s ≥ t ≥ 0

E(W (s)Wn(t)) =

{
0, if n = 2k, k = 0, 1, 2, . . .

n!! t
n+1
2 , if n = 2k − 1, k = 1, 2, . . .

.

(b) Show that E
(
|W (t)−W (s)|2

)
= |t− s|, t, s ≥ 0.

Hint: Calculate E(Wn+1(t)).

6. (a) Find the function f = f(s, t, x) such that the following holds

P{Wt < 5
√
t}E[W 2

t W
2
s |Ws] +W 2

sE[W2s|Ws] = W 2
s f(s, t,Ws), 0 < s ≤ t,

if Wt is standard Brownian motion and Wt is history of Brownian motion until
time t.

(b) Determine E[f(s, t,Ws)].
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8 Discrete Martingales

As the time increases, so does our knowledge about what happened in the past.

Definition 8.1. A sequence of σ−fields F1,F2, . . . on Ω such that F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂
Fn+1 ⊂ . . . ⊂ F is called a filtration.

Here Fn represents our knowledge at time n. It contains all events A such that at
time n it is possible to decide whether A has occurred or not. As n increases, there will
be more such events A, i.e. the family Fn representing our knowledge will become larger.

Suppose that ξ1, ξ2, . . . is a sequence of random variables and F1,F2, . . . is a filtration.
They may have nothing in common. However, in practice the filtration will usually contain
the knowledge accumulated by observing the outcomes of the random sequence. The
condition in the definition below means that Fn contains everything that can be learned
from the values of ξ1, ξ2, . . ..

Definition 8.2. We say that a sequence of random variables ξ1, ξ2, . . . is adapted to a
filtration F1,F2, . . . if ξn is Fn−measurable for each n = 1, 2, . . . .

Example 8.1. If Fn = F(ξ1, ξ2, . . . , ξn) is σ−field generated by ξ1, ξ2, . . . , ξn then ξ1, ξ2, . . .
is adapted to F1,F2, . . . .

The concept of a martingale has its origin in gambling, namely, it describes a fair
game of chance. Some aspects of gambling are inherent in the mathematics of finance, in
particular, the theory of financial derivatives such as options. In fact, martingales reach
well beyond game theory and appear in various areas of modern probability and stochastic
analysis, notably, in diffusion theory.

Definition 8.3. A sequence ξ1, ξ2, . . . of random variables is called a martingale with
respect to a filtration F1,F2, . . . if

1. ξn is integrable for each n = 1, 2, . . .,

2. ξ1, ξn, . . . is adapted to F1,F2, . . .,

3. E(ξn+1|Fn) = ξn a.s. for each n = 1, 2, . . . .

Definition 8.4. We say that ξ1, ξ2 . . . is a supermartingale (resp. submartingale)
with respect to a filtration F1,F2, . . . if

1. ξn is integrable for each n = 1, 2, . . .;

2. ξ1, ξn, . . . is adapted to F1,F2, . . .;

3. E(ξn+1|Fn) ≤ ξn a.s. for each n = 1, 2, . . .
(

resp. E(ξn+1|Fn) ≥ ξn a.s. for each

n = 1, 2, . . .
)
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8.1 Martingales and Brownian motion Wt

Let {Wt, t ≥ 0} be a Brownian motion process. Denote by

Ws = F(Wt, 0 ≤ t ≤ s)

the history of Brownian motion until time s.

Theorem 8.1. Wt is martingale with respect to Ws.

Proof. 1. Wt is integrable for each t, E[Wt] = 0 <∞.

2. follows from construction of Ws that Wt is adapted to the filtration Wt.

3. We want to show that E[Wt|Ws] = Ws. We have

E[Wt|Ws] = E[Wt −Ws +Ws|Ws]

= E[Wt −Ws|Ws] + E[Ws|Ws]

= E[Wt −Ws] +Ws = 0 +Ws = Ws.

It was used above that Wt −Ws : N (0, t− s), Ws is measurable with respect to Ws

and Wt −Ws is independent of Ws.

Theorem 8.2. W 2
t − t is martingale with respect to the history of Brownian motion Ws.

Proof. 1. E[W 2
t − t] = t− t = 0 <∞

2. follows from construction of Ws.

3. We want to show that E[W 2
t − t|Ws] = W 2

s − s. We have

E[W 2
t |Ws] = E[(Wt −Ws)

2 + 2WtWs −W 2
s |Ws]

= E[(Wt −Ws)
2|Ws] + E[2WtWs|Ws]− E[W 2

s |Ws]

= E[(Wt −Ws)
2] + 2WsE[Wt|Ws]−W 2

s

= t− s+ 2W 2
s −W 2

s = t− s+W 2
s .

Thus,
E[W 2

t − t|Ws] = t− s+W 2
s − t = W 2

s − s.
It was used above that Wt−Ws : N (0, t− s) and E[(Wt−Ws)

2] = D[(Wt−Ws)
2] =

t− s.

Theorem 8.3 (Lévy’s characterization of Brownian motion). Let {Xt, t ≥ 0} be a stochas-
tic process and denote by Ft = F(Xs, 0 ≤ s ≤ t) a history og the process Xt until time t
(t is included). Process {Xt, t ≥ 0} is Brownian motion if and only if

1. X0 = 0

2. the sample paths t 7→ Xt are continuous( Xt has a continuous trajectories)

3. Xt is martingale with respect to filtration Wt = F{Xs, s ∈ [0, t]}.

4. X2
t − t is martingale with respect to filtration Wt.
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8.2 Exercises

1. Show that eWte−t/2 is a martingale if Wt is standard Brownian motion.

2. Let (Xn)n∈N be a sequence of independent random variables, such that P{Xn =
1} = p and P{Xn = −1} = q for all n ∈ N and 0 < p < 1, q = 1 − p. Define
Sn :=

∑n
j=1Xj , n ≥ 1.

(a) Compute the probability mass function of the random variable Yi :=
(q
p

)Xi
,

i ∈ N.

(b) Prove that the sequence of random variables

Mn :=
(q
p

)Sn
is a martingale with respect to a filtration Fn = σ(Xj , 1 ≤ j ≤ n), n ≥ 1. With
σ(Xj , 1 ≤ j ≤ n), n ≥ 1 we denote σ-algebra generated by random variables
Xj , 1 ≤ j ≤ n.

3. X1, X2, . . . is a sequence of independent identically distributed random variables with
zero expectation and finite variance. Suppose that Xi cannot take absolute values
greater than 1. Define

Sn := X1 + . . .+Xn, n ∈ N.

Find a constant a such that S2
n− aE(S2

n) is a martingale with respect to a filtration
Fn which is a σ−algebra generated by X1, . . . , Xn.

4. Consider a function f : [0,∞)→ R and define a process

Xt := W 3
t + f(t)Wt, t ≥ 0,

where Wt is a standard Brownian motion. Determine a function f such that {Xt}
is a martingale.

5. Find a constant a such that

V (t) = W 3(t) + aW 2(t)− 3tW (t) + t, t ≥ 0

is martingale, if W (t) is standard Brownian motion.

6. Consider a sequence of independent, identically distributed random variables

Xn :

(
−6 −2 2 6
1/4 1/4 1/4 1/4

)
.

Prove that γn = cos(πn) sin
(
π
2Sn

)
, Sn = X1 + . . .+Xn, n ∈ N is a martingale with

respect to the filtration Fn = F(X1, . . . , Xn).
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7. Consider the sequence X1, X2, . . . of independent integrable identically distributed
random variables such that

φ(λ) = E[eλX1 ] < +∞, for some λ 6= 0.

Prove that

Mn := φ−n(λ)eλSn , where Sn :=
n∑
i=1

Xi

is martingale with respect to filtration Fn = F(X1, . . . , Xn).
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9 Appendix

9.1 Eigenvalues and eigenvectors of a matrix

For a given square matrix A a characteristic polynomial is pA(λ) = det(λI−A), where
I is identity matrix. The spectrum of a matrix A, σ(A) = {λ ∈ C : pA(λ) = 0} is the
set of its eigenvalues i.e. λ ∈ C is an eigenvalue of a matrix A is and only if λ ∈ σ(A).
Vector x ∈ ker(λI − A) is an eigenvector corresponding to the eigenvalue λ. The right
eigenvector is a column vector satisfying λx = Ax and the left eigenvector is a row
vector satisfying λx = xA.
Cayley Hamilton theorem: pA(A) = 0.

The eigendecomposition (or spectral decomposition) of a diagonalizable matrix A is a
decomposition of a diagonalizable matrix into a specific canonical form whereby the matrix
is represented in terms of its eigenvalues and eigenvectors. Suppose that the eigenvalues
of a n×n matrix A are denoted by λ1, λ2, . . . , λn. The right eigenvector corresponding to
λi is denoted by ri and the left eigenvector corresponding to λi is denoted by li. So,

λiri = Ari, λili = liA.

It holds
det(A) = λ1λ2 · . . . · λn, tr(A) = λ1 + λ2 + . . .+ λn.

Then
A = S−1DS = TDT−1,

where D = diag{λ1, λ2, . . . , λn}, the i−th row of a matrix S is li, while the i−th column
of a matrix T is ri. Then

An = S−1DnS = TDnT−1.
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