Martingali i Braunovo kretanje

1. Let η_1, η_2, \ldots be a sequence of independent integrable random variables such that $E(\eta_n) = 0$ for all $n = 1, 2, \ldots$. Let

$$\xi_n = \eta_1 + \ldots + \eta_n,$$

$$\mathcal{F}_n = \mathcal{F}(\eta_1, \ldots, \eta_n).$$

Show that a sequence ξ_1, ξ_2, \ldots is a martingale with respect to a filtration $\mathcal{F}_1, \mathcal{F}_2, \ldots$

- 2. Show that if ξ_1, ξ_2, \ldots is a martingale with respect to $\mathcal{F}_1, \mathcal{F}_2, \ldots$ then $E(\xi_1) = E(\xi_2) = \ldots$
- 3. Let ξ_n be a symmetric random walk, $\xi_n = \eta_1 + \ldots + \eta_n$, where η_1, η_2, \ldots is a sequence of independent identically distributed random variables such that

$$P(\eta_n = 1) = P(\eta_n = -1) = \frac{1}{2}$$

and \mathcal{F}_n the filtration defined by $\mathcal{F}_n = \mathcal{F}(\eta_1, \ldots, \eta_n)$. Show that

$$\gamma_n = (-1)^n \cos(\pi \xi_n)$$

is martingale with respect to \mathcal{F}_n .

- 4. Show that $e^{W_t}e^{-t/2}$ is a martingale if W_t is standard Brownian motion.
- 5. Show that for any T > 0, V(t) = W(t+T) W(T) is a standard Brownian motion if W(t) is.
- 6. Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of independent random variables, such that $P\{X_n = 1\} = p$ and $P\{X_n = -1\} = q$ for all $n \in \mathbb{N}$ and $0 . Define <math>S_n := \sum_{j=1}^n X_j, n \ge 1$.
 - (a) Compute the probability mass function of the random variable $Y_i := \left(\frac{q}{n}\right)^{X_i}, i \in \mathbb{N}$.
 - (b) Prove that the sequence of random variables

$$M_n := \left(\frac{q}{p}\right)^{S_r}$$

is a martingale with respect to a filtration $\mathcal{F}_n = \sigma(X_j, 1 \leq j \leq n), n \geq 1$. With $\sigma(X_j, 1 \leq j \leq n), n \geq 1$ we denote σ -algebra generated by random variables $X_j, 1 \leq j \leq n$.

- 7. Let $(W_t)_{t\geq 0}$ be a standard Brownian motion. Find $E(W_4^2|W_2)$.
- 8. X_1, X_2, \ldots is a sequence of independent identically distributed random variables with zero expectation and finite variance. Suppose that X_i cannot take absolute values greater than 1. Define

$$S_n := X_1 + \ldots + X_n, \quad n \in \mathbb{N}.$$

Find a constant a such that $S_n^2 - aE(S_n^2)$ is a martingale with respect to a filtration \mathcal{F}_n which is a σ -algebra generated by X_1, \ldots, X_n .

9. Consider a function $f:[0,\infty)\to\mathbb{R}$ and define a process

$$X_t := W_t^3 + f(t)W_t, \ t \ge 0,$$

where W_t is a standard Brownian motion. Determine a function f such that $\{X_t\}$ is a martingale.

10. Consider a standard Brownian motion W_t and define

$$X_t := W_t - tW_1, \ 0 \le t \le 1.$$

- (a) Find a autocovariance function $K_X(t,s)$ for a given process X_t .
- (b) Does the process $\{X_t\}_{0 \le t \le 1}$ has an independent increments?
- 11. Consider the standard Brownian motion $W(t), t \ge 0$.
 - (a) Prove that for $s \ge t \ge 0$

$$E(W(s)W^{n}(t)) = \begin{cases} 0, & \text{if } n = 2k, \, k = 0, 1, 2, \dots \\ n!! t^{\frac{n+1}{2}}, & \text{if } n = 2k - 1, \, k = 1, 2, \dots \end{cases}$$

- (b) Show that $E(|W(t) W(s)|^2) = |t s|, t, s \ge 0$. Hint: Calculate $E(W^{n+1}(t))$.
- 12. Find a constant a such that

$$V(t) = W^{3}(t) + aW^{2}(t) - 3tW(t) + t, \quad t \ge 0$$

is martingale, if W(t) is standard Brownian motion.