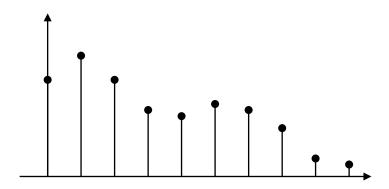
MULTIRATE SYSTEMS

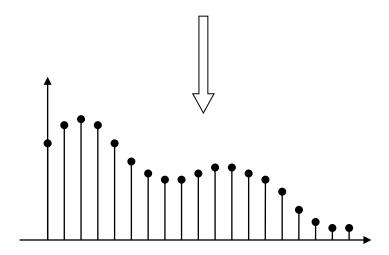
Multirate signal processing

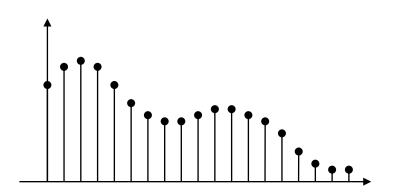
- Systems sometimes have to work with signals sampled at different sampling frequencies (sampling rates)
- Sampling rate conversion
 - Via continuous-time domain
 - Completely in discrete-time domain
 - Based on *interpolation* and *decimation*
- Applications
 - Interface between systems working at different sampling frequencies
 - Oversampling (to simplify anti-aliasing filter)
 - Efficient implementation of some DSP algorithms
 - Narrowband FIR filtering

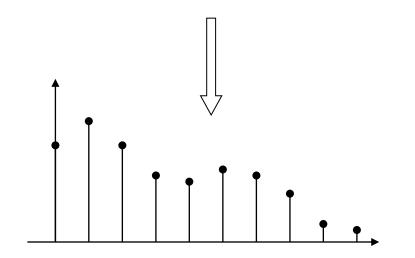
Interpolation

Decimation



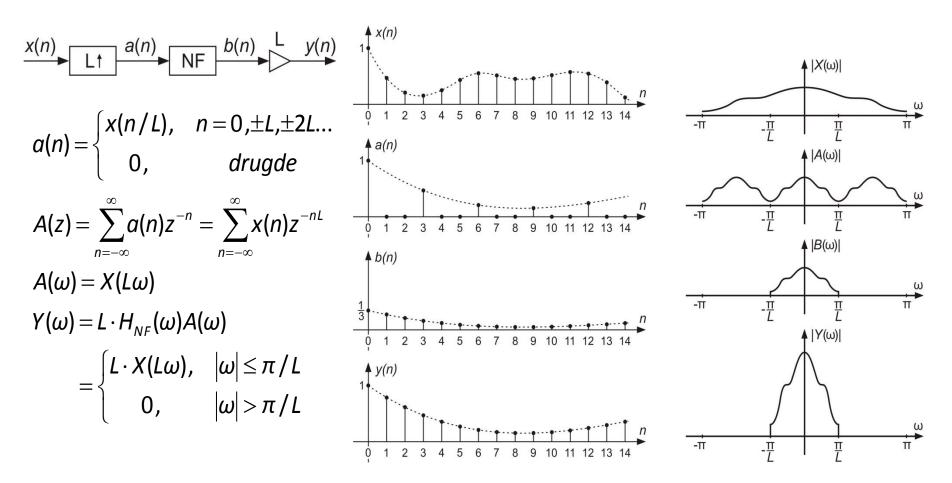






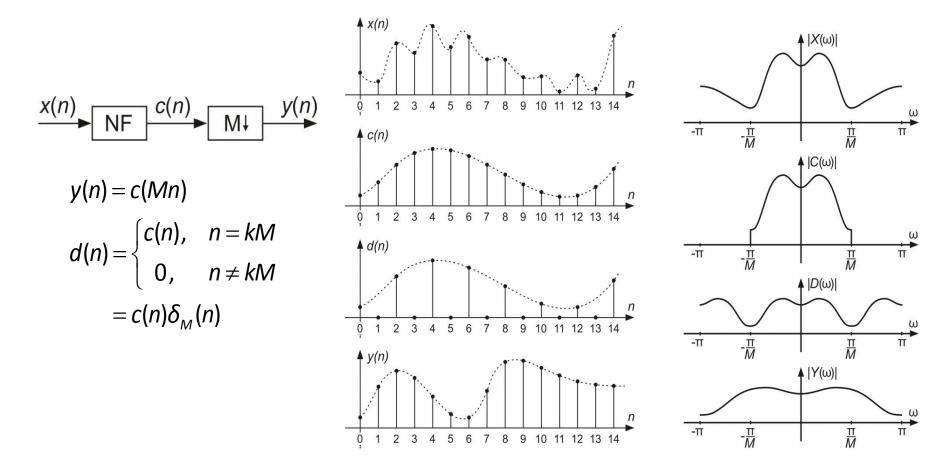
Interpolation

• Increasing the sampling frequency *L* times in the digital domain



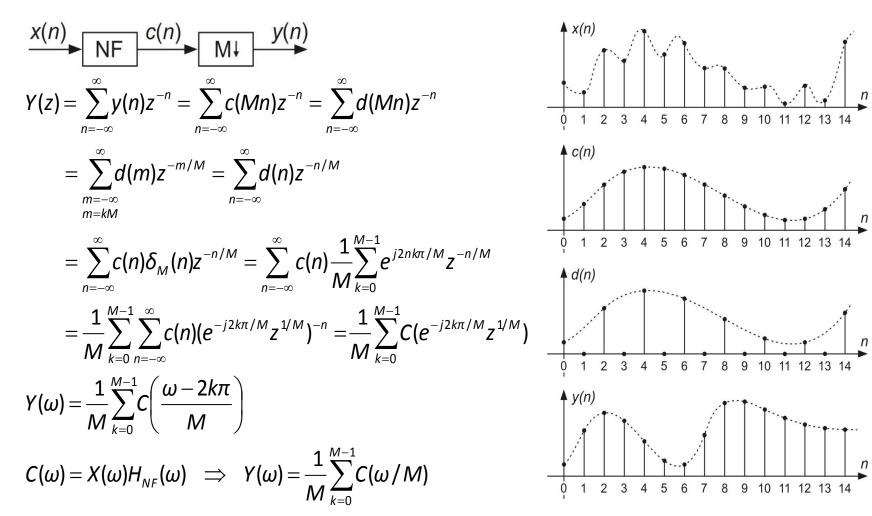
Decimation

• Decreasing the sampling frequency *M* times in the digital domain



Decimation

• Decreasing the sampling frequency *M* times in the digital domain



Decimation

• Decreasing the sampling frequency *M* times in the digital domain

$$X(n) \longrightarrow NF \xrightarrow{C(n)} M \xrightarrow{Y(n)} Y(n)$$

$$Y(z) = \sum_{n=-\infty}^{\infty} y(n) z^{-n} = \sum_{n=-\infty}^{\infty} c(Mn) z^{-n} = \sum_{n=-\infty}^{\infty} d(Mn) z^{-n}$$

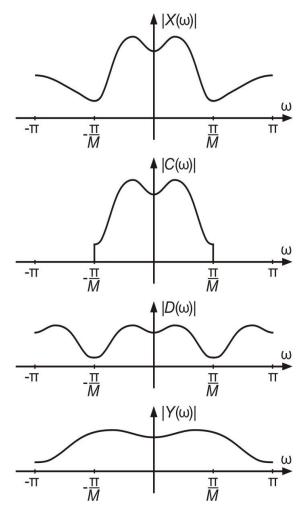
$$= \sum_{\substack{m=-\infty \\ m \neq M}}^{\infty} d(m) z^{-m/M} = \sum_{n=-\infty}^{\infty} d(n) z^{-n/M}$$

$$= \sum_{\substack{n=-\infty \\ n=-\infty}}^{\infty} c(n) \delta_M(n) z^{-n/M} = \sum_{\substack{n=-\infty \\ n=-\infty}}^{\infty} c(n) \frac{1}{M} \sum_{k=0}^{M-1} e^{j2nk\pi/M} z^{-n/M}$$

$$= \frac{1}{M} \sum_{k=0}^{M-1} \sum_{\substack{n=-\infty \\ n=-\infty}}^{\infty} c(n) (e^{-j2k\pi/M} z^{1/M})^{-n} = \frac{1}{M} \sum_{k=0}^{M-1} C(e^{-j2k\pi/M} z^{1/M})$$

$$Y(\omega) = \frac{1}{M} \sum_{k=0}^{M-1} C\left(\frac{\omega - 2k\pi}{M}\right)$$

$$C(\omega) = X(\omega) H_{NF}(\omega) \implies Y(\omega) = \frac{1}{M} \sum_{k=0}^{M-1} C(\omega/M)$$



General sampling rate conversion

- The ratio between the old and the new sampling rate is not always an integer
- If the ratio is a (convenient) rational number, the change in f_s can be effected by combining decimation and interpolation



ADAPTIVE SYSTEMS

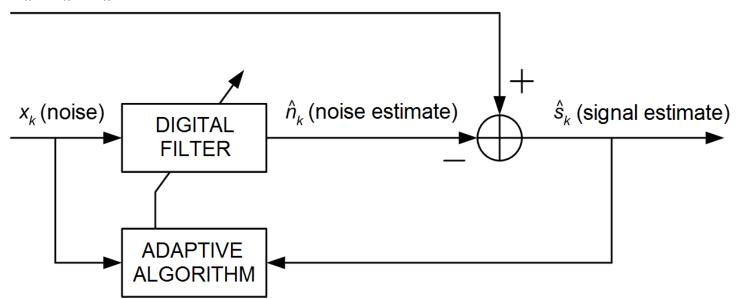
Definition and applications

- Discrete-time system whose characteristics automatically change depending on certain characteristics of the input signal
 - Filter with time-varying coefficients
 - Filter component is usually FIR
 - Simple and without risk of instability
- An adaptive system is not LTI
- Applications
 - When the problem demands the system to be adaptable to changing conditions
 - Equalization of a signal at the output of a channel of unknown properties
 - When it is necessary to reduce the noise whose spectrum overlaps with the spectrum of the useful signal, or its position changes with time
 - ECG, EEG
 - Communication in spread spectrum
 - Echo cancellation

Examples

Adaptive system for noise cancellation

 $y_k = s_k + n_k$ (signal + noise)

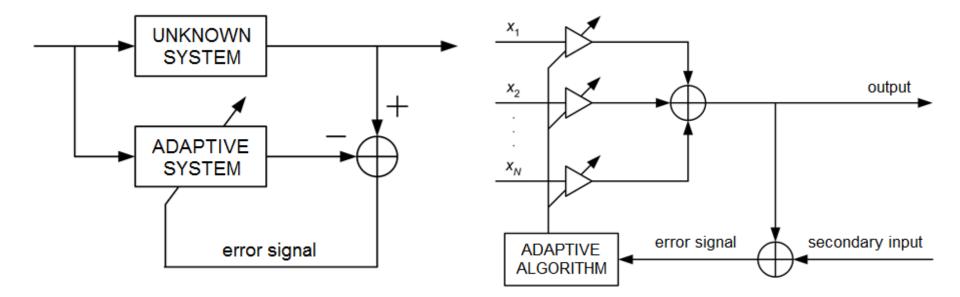


- *x_k* is the measure of noise, which is somehow correlated with *n_k*
- The aim is to make an optimal estimate of noise in the input signal
- \$\higsig_k\$ serves as the estimate of the output signal, and as the error signal as well

Examples

• System modelling

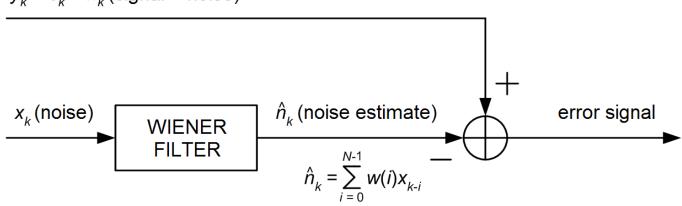
• Linear combiner



 Estimating the transfer function of an unknown system Adaptive modification of coefficients that multiply input signals

Adaptive algorithms

- All these algorithms aim to minimize the error signal according to a certain criterion
 - LMS (least mean square) algorithms
 - Most efficient
 - Do not have the problem of numeric instability
 - RLS (recursive least square) algorithms
 - Kalman filters
- Many of these can be seen as approximations of Wiener filter



 $y_k = s_k + n_k$ (signal + noise)

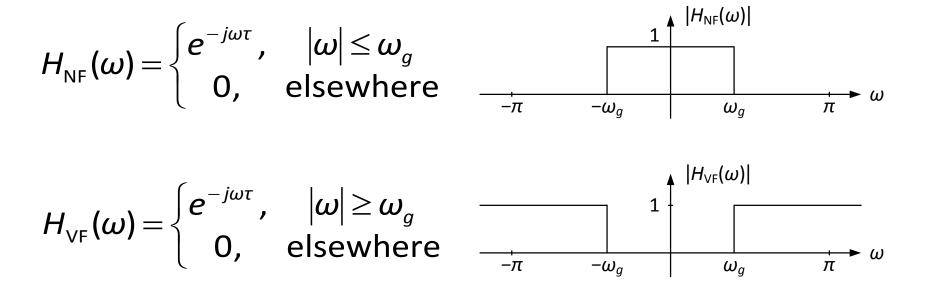
FILTER DESIGN

• DTFT of the impulse response of an LTI system represents its *frequency response*

$$H(\omega) = \sum_{n=-\infty}^{\infty} h(n) e^{-j\omega n} = |H(\omega)| e^{j\Phi(\omega)}$$
$$|H(\omega)| - \text{magnitude response}$$
$$\Phi(\omega) - \text{phase response}$$

Ideal filters

• Although impossible to obtain in practice, they are often used as a starting point in filter design



• Term $e^{-j\omega\tau}$ models the delay, which is defined to be constant in ideal filters

Ideal filters

$$H_{PO}(\omega) = \begin{cases} e^{-j\omega\tau}, \ \omega_{g1} \le |\omega| \le \omega_{g2} \\ 0, \ \text{elsewhere} \end{cases} \xrightarrow{1} \begin{array}{c} 1 \\ -\pi & -\omega_{g2} & -\omega_{g1} \end{array} \xrightarrow{|H_{PO}(\omega)|} \\ H_{NO}(\omega) = \begin{cases} 0, \ \omega_{g1} \le |\omega| \le \omega_{g2} \\ e^{-j\omega\tau}, \ \text{elsewhere} \end{array} \xrightarrow{1} \begin{array}{c} 1 \\ -\pi & -\omega_{g2} & -\omega_{g1} \end{array} \xrightarrow{|H_{NO}(\omega)|} \\ H_{AP}(\omega) = e^{-j\omega\tau} \end{array} \xrightarrow{1} \begin{array}{c} 1 \\ \mu_{AP}(\omega) = e^{-j\omega\tau} \end{array} \xrightarrow{1} \begin{array}{c} 1 \\ -\pi & -\omega_{g2} & -\omega_{g1} \end{array} \xrightarrow{|H_{AP}(\omega)|} \\ \hline -\pi & -\omega_{g2} & -\omega_{g1} \end{array} \xrightarrow{1} \begin{array}{c} 1 \\ \mu_{AP}(\omega) = e^{-j\omega\tau} \end{array} \xrightarrow{1} \begin{array}{c} 1 \\ \mu_{AP}($$

• In practice, we design filters starting from filter *specifications*, which define how much the frequency response can differ from the ideal one

Steps in filter design

- Design aim: to obtain an economical system that will meet the requirements
- Design stages:
 - Specification definition
 - Result: tolerance diagram
 - Approximation
 - Result: a stable rational transfer function
 - Choice of realization structure
 - Result: a block diagram with known values of multiplication constants
 - Quantization and verification
 - Result: answer to the question whether a filter with given finite wordlength will still meet the requirements defined in the first phase
 - Implementation (hardware or software)
 - Result: the realized system
- If needed, certain steps can be repeated

FIR or IIR filter?

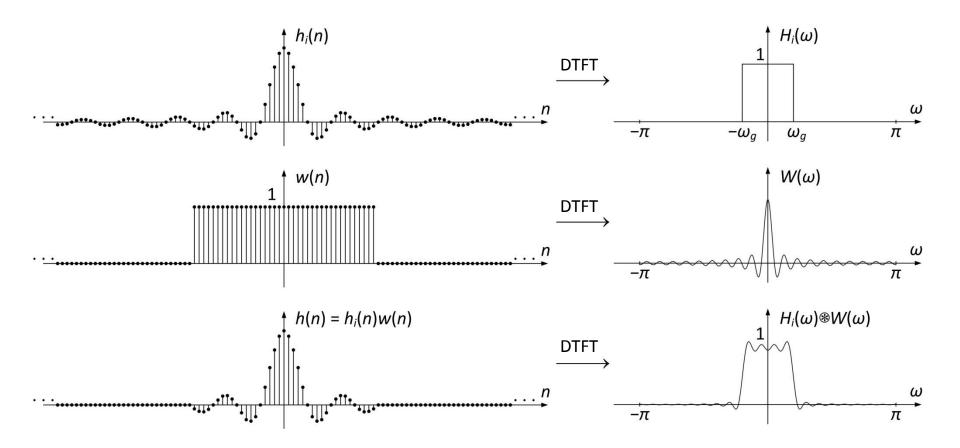
- FIR are always stable
- FIR can achieve constant delay (linear phase response)
 - Impulse response should be either symmetrical or anti-symmetrical
- FIR are much less sensitive to finite wordlength effects
- IIR can generally meet a similar set of specifications with a lower order
 - IIR generally require less processing power and less work to set up

FIR filter design

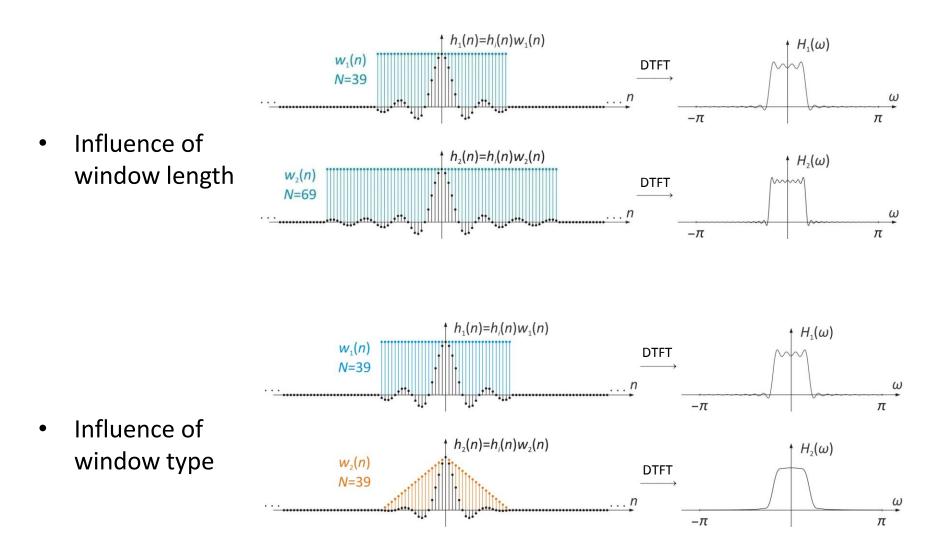
- $H(\omega)$ can be specified in some points only
 - h(n) can be found through a set of equations
 - If we have N equidistant points at the interval $0 \le \omega < 2\pi$, h(n) can be obtained using inverse DFT of the sequence $\{H(\omega_k)\}$, this is called **sampling in frequency domain**
- $H(\omega)$ can be specified at the entire range $0 \le \omega < 2\pi$ with certain tolerance
 - h(n) can be found using inverse DTFT of {H(ω)}, and performing
 windowing on the obtained sequence of infinite duration
 - h(n) can be found by iteratively solving a system of equations in order to meet a certain optimization criterion (**optimal method** of filter design)

Example: FIR filter design by windowing

• Windowing causes distortion of the frequency response (spectral leakage and ripple)



Example: FIR filter design by windowing



IIR filter design

- Methods for FIR filter design are not applicable here
- Predominant approach is to design an IIR filtar on the basis of a referent *continuous-time* prototype filter
 - There are recipes for standard frequency responses (low-pass, high-pass, band-pass, band-stop)
 - There are efficient algorithms for non-standard frequency responses as well
 - Direct design in polar coordinate system is avoided