SPECTRAL ANALYSIS

OF DISCRETE-TIME SIGNALS




Random discrete signals

* Exact values are unknown outside of the range
in which the signal is observed

* Described through statistical parameters

= This approach is sensible for many real-world
signals, which occur as a consequence of mutual
interaction of a number a complex causes
A random signal is one specific realization of a
random process

= A discrete-time random process X _ represents a
time series of random variables
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Random variables and random processes

* Arandom variable can be described
through its cumulative probability

distribution function (CDF): A Felx)
Fo(x)=P(X <x) o —
and if it is continuous, it can also be 7 5 X
described through its probability ‘A:/ 2 A/:Z
density function (PDF): ; ;
dF, (x) i A pi(x)
py(x)=—= 5 -
dx ! 1/A
* In this way we can also describe any X
random process at a particular ZA/2 A2

moment



Random processes

* Arandom process at a moment n can be described using a CDF
dependent on n:

Fy (x,n)=P(X_ <x)

and if it is continuous, it can also be described using a PDF
dependent on n: dF, (x,n)

X,n)=
px (x,n) ™
* The values of X, are generally mutually dependent, and to fully

describe a random process we should know a joint CDF for any
subset of moments:

. x, %, (Xp, Xp e Xpy Ny, Ny ey ) =P(X <X, X, <X,,.. X, <X,)

= |n practice this function is most often unknown, and we describe random
processes using statistical parameters such as mean and autocorrelation
function



Stationarity of a random process

 Arandom process is (strict-sense) stationary if its joint CDF does
not change in time, i.e. if, for any integer k, the following holds:

Fy x,.x,, (X, X, Xy, 0y,0,,...0,)

=F, (X, Xy, X, N, +k,n, +k,...n, +Kk)

n1+an2+k "'XnN+k

= There are many random processes for which this does not hold, and
which go through various states, in which their statistical properties may
be quite different



Mean and autocorrelation function

 The mean of a random process is its mathematical expectation:

o0

m, (n) = E{Xn}: jxpxn (x,n)dx

—00

and if it does not depend on n, the process is stationary with
respect to its mean

* The autocorrelation function of a random process is the measure
of the similarity of its values at the time instants n and n+k:

(n,n+k)=E{X X ..} J-J‘x X0, (xy,%,,n,n+k)dx,dx,

n n+k n’*n+k

—00 —00

and if it depends solely on k, the process is stationary with
respect to its autocorrelation function

* A process stationary both in terms of its mean and its
autocorrelation function is considered wide-sense stationary



Variance

 The variance of a wide-sense stationary (WSS) random process
is the measure of its expected deviation from its mean:

o2 =E{(X, —m, )| = T(x—mx)z by (x,n)dx

) y(n)
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* If m, =0, the variance is equal to the average power of the
signal



Estimation of statistical parameters

* We usually have only one member of the statistical ensemble
x(n) at our disposal, from which we should infer the values of
the statistical parameters of a WSS random process

* The mean of the discrete signal x(n) is:

x(n)=lim x(n
( N—>002N+1Z (n)

and its autocorrelation is:

r, (k)= lim x(n)x(n+k

() =lim Z()( )

and if the process is ergodic, they are equal to the ensemble
mean and autocorrelation function

* In practice we cannot calculate either of these parameters
because we would need to know infinitely many values of signal
samples and calculate infinite sums



Examples of parameter estimation

Mean estimation

The standard estimate of the mean is:

This estimate is unbiased (its expectation is equal to the actual
mean m, ):

R 1 N-1 1 N-1
el =} Sox, =S el )=,

This estimate is also consistent (variance goes to 0 when N goes
to infinity)
= Consistency is a highly desirable property of an estimate because with a

consistent estimate we can expect the same result from any member of
the ensemble



Examples of parameter estimation

Estimation of the autocorrelation function

e The standard estimate of the autocorrelation function is:
X 1 N—|k|-1
Fo (k) == x(n)x(n+k)
N n=0
* This estimate is biased (its expectation is not equal to the actual

autocorrelation function r,, (k)):
X N |k|-1 N |k|-1 k
E{rxx(k)} ZE{ n n+k} Z (k):[l_ﬁjrxx(k)

but it is asymptotically unbiased (its expectation converges to
I, (k) as N approaches infinity)

 This estimate is consistent



Spectrum of a discrete-time random process

Discrete-time random signals have infinite energy and thus have
no DTFT, and we cannot calculate the energy spectral density
(which is equal to the square of the magnitude spectrum)

Discrete-time random signals have finite average power:

P = I|m by Z\x(n)\

and it is possible to define their power spectral density (power
spectrum), by analogy with a corresponding definition for
deterministic signals:

2}

N

S(w)—llmE{ 1 ZXne‘j“’”
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Spectrum of a discrete-time random process

Power spectral density (PSD) is equal to the Fourier transform of
the autocorrelation function:

S (w)= irxx(k)e‘f“’k

and it is a real, non-negative function, and in the case of real
signals also even

The estimation of power spectral density is one of the most
frequent and most important tasks in digital signal processing

= The problem is that we usually have only one member of the statistical
ensemble at our disposal, and we usually know the values of only a
limited number of its samples



Methods for power spectrum estimation

Non-parametric (classical) methods

* The spectrum is directly calculated by applying DTFT to
either a finite-length segment of the input singal or its
autocorrelation

* We do not introduce any assumptions as to the shape of
the power spectrum

Parametric methods

* We introduce a model of power spectral density function
and the problem amounts to the estimation of the
parameters of this model

* If an adequate model is used, these methods can give much
better results than non-parametric ones, particularly if only
a short segment of the input signal is available



Non-parametric methods for estimating S, (w)

* The estimation of S, (w) is more accurate if a longer segment of the
input signal is available (as was the case with deterministic signals)

o N=16 | |
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* If Nistoo small, we can increase the density of DFT samples by zero
padding, although this does not affect frequency resolution

= Zero padding, as a means for increasing the density of DFT samples is of
particular importance for non-stationary signals



Periodogram

* Direct estimate based on the definition of S, (w), with the
time range limited to the interval from 0 to N-1.:

’ . 1
} — SX(CU)—N

N

ZXne_j“’”

n=—N

1
S (w)=IlimE
" Noo | 2N +1

which is a real, non-negative function, and in the case of
real signals also even, just as was the case for S, (w)



Periodogram

$,(w) =~ [X(w) == X@)X'(

N
) _ZX(”)“" Zx(m)efwm
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* Periodogram represents the Fourier transform of the standard
estimate of the autocorrelation function of a random process



Properties of the periodogram

* The expectation of the periodogram $,(w) is not equal to the actual
power spectrum S,(w) = DTFT{r,,(k)}, but to DTFT{r,,(k)wg(k)},
where wy(k) is the triangular window function

= Periodogram is a biased estimate of S,(w), but still asymptotically unbiased

* When estimating S,(w) on the basis of a periodogram, the problem
of spectral leakage occurs

A . _1(sinNw/2 2
E{Sx(w)} —SX((U)@WB((U) WB(w)_ N( sinw /2 j



Properties of the periodogram

* Variance of the periodogram S,(w) for large values of N in most
cases of practical interest is proportional to the square of S,(w)

. - 2

LlL?OVar {Sx(w)} ~ S (w)

= Periodogram is an inconsistent estimate of S,(w), which means that
it can greatly depend on the realization of the random process

= Due to its inconsistency, periodogram is not considered to be a
high quality estimate of S,(w)

= Anidea: to split the available segment of the input signal into K
equal parts, to calculate the periodogram on each of them and to
calculate the average of the results



Periodogram averaging

* Let the available segment of the input signal x(n) of length N be
divided into K equal parts of length M = N/K, with no overlap
(basic version, proposed by Bartlett)

e Let §i” (w) be the periodogram calculated on the i-th segment:

Zx n)e"“’”

 The averaged periodogram is obtained as the average of thus
obtained K periodograms:

A g 1 K-1 A (i)
S; (w) :EZSX (w)

i=0

S(l)




Properties of the averaged periodogram

Mathematical expectation of $%(w) is equal to the mathematical
expectation of a single periodogram 5" (w) :

E{ff(w)} - Af [1_5]’3«(/{)6@/{ =5y (W)W, (w)

k=—M+1
and since the triangular window function is now K times shorter,
the frequency resolution is also K times worse

The variance is reduced by a factor of K with respect to the
standard periodogram (the variance of the mean of K identically
distributed random variables is K times smaller than the variance of

a single one of them):

lim Var {§X(w)} ~ %Sf((w)

N—o

By averaging in this way, we have improved the consistency of the
estimate at the expense of the frequency resolution



Modifications of the averaged periodogram

* The basic idea of Bartlett can be modified in two ways (both proposed by
Welch):

= Consecutive segments can overlap
* This increases the number of segments and decreases variance further

* QOverlap should not be too significant because that would undermine the
assumption of independence between consecutive segments (if the
overlap is above 50% the variance will abruptly stop decreasing)

= Every segment x,(n) can be shaped by applying a non-rectangular window
function before calculating the periodogram

* This reduces the correlation between consecutive segments, and also
mitigates the problem of lower reliability of the estimate of
autocorrelation function for large k

* Without affecting the frequency resolution, the variance is now lower:

for a large N it still behaves as Sf((w)/K, but K is now greater owing to the
overlap



Periodogram smoothing

The idea is based on windowing the estimate of the autocorrelation
function (as proposed by Blackman and Tukey):

= This reduces the influence of less reliable values of r_(k), obtained for
large |k

SPT(w) =FTD{F , (k)w(k)}= Z P (k)w(k)e ™
k=—K+1
Mathematical expectation of a thus smoothed periodogram is:

E{87 (w)| = FTD{E, (k) w(k)} = FTD{F, (kw, (Kiw(K)}
= 5, (W)BW, (W)eW(w) = E{3, (w)| @W(w)
where w(k) is usually much shorter than wy(k), and thus the influence

of convolution with Wg(w) is negligible
The resulting spectral leakage depends on W(w)

= The choice of W(w) affects the trade-off between the variance and the
frequency resolution



Parametric methods for estimating S, (w)

 We introduce a model of the random process, and the problem of estimating
Sy (w) amounts to the problem of estimating model parameters

* We assume that the signal x(n) is the output of an LTI system with transfer

function: q .
Zb,z"
B(z)

i=0

= =0 .
Alz) 1+ Za,z"
i=1

H(z)=

where the input is white noise s(n) of zero mean and variance (average
power) equal to o2

= The term white implies that the samples of noise are mutually

uncorrelated, i.e.:
ro (k)= o°6(k)

* This reduces the problem to the modeli fasyst B( )‘2
h deling of a system B(w
2

Alw)

* Power spectral density of the output signal is equal to: S, (w)=0



Parametric methods for estimating S, (w)

* First we need to choose the values for .
p and g, and then to estimate g; and b, X(2) Zb,-z_’

= g=0: AR (autoregressive) models

= p=0: MA (moving average) models
= g#0,p#0: ARMA models

 The choice is usually based on some previous knowledge of the

random process

= Owing to their simplicity, AR models are most commonly used (the others
yield non-linear systems of equations)

= An example of a problem where AR is the obvious solution is the signal
which is composed of a sinusoid of an unknown frequency and noise

* Poles of the model should match the unknown frequency of the
sinusoid



Estimation of S, (w) for AR random processes

x(n) = Za x(n—1i)+ s(n)

E{x(n)x(n—k)} = ZaE x(n—k)}+E{s(n)x(n —k)}

£ we assume k > 0, and
Z —i)+ E{s(n)Zh(m sln—k— m)} the values for negative
- k can be easily found
p .
Z _i)+ Zh(m)E s(n)s(n—k — m)} because ry, (k) is even
i=1 m=0
p 00
Z —i)+ Zh(m)gzgj(m + k) h(m) exists only for m =2 0, and
i—1 m=0 thus for k > 0 the only case

when the right sum is non-zero
—Zarxx(k i), k>0 iswhenk=m=0

we have used h(0) = 1, which
follows from B(z) =

—Za o (k—i)+0®, k=0




Estimation of S, (w) for AR random processes

Coefficients a; and o2 are the solutions of the Yule-Walker equations:

_rxx (0) My (_1) cen Fyx (—p) i 1 0-2
(1) ry (0) v Ny (=p+1) || o 0
_rxx(p) rxx(p_l) rXX(O) __ap_ _O_

The system matrix is a symmetrical Toeplitz matrix (each descending
diagonal from left to right is constant), and thus the system can be solved
efficiently, in N? instead of N3time, using the Levinson-Durbin algorithm

= The same matrix is obtained if the problem is posed as a linear prediction
problem, i.e. if the foIIowing is assumed:

x(n) = Za x(n—1)

In practice the autocorrelatlon functlon ry (k) is not available and we only
have its estimate, but the values of this estimate for k < p are still much
more reliable than the values for relatively large k



