
SPECTRAL ANALYSIS 
OF DISCRETE-TIME SIGNALS 



Random discrete signals  

• Exact values are unknown outside of the range 
in which the signal is observed 

• Described through statistical parameters 

 This approach is sensible for many real-world 
signals, which occur as a consequence of mutual 
interaction of a number a complex causes 

• A random signal is one specific realization of a 
random process 

 A discrete-time random process       represents a 
time series of random variables 
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Statistical ensemble 

• A set of all possible 
realizations of a  
random process 

 different signals but 
same statistical 
properties 
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Random variables and random processes 

• A random variable can be described 
through its cumulative probability 
distribution function (CDF): 

 
and if it is continuous, it can also be 
described through its probability 
density function (PDF): 

 

 

• In this way we can also describe any 
random process at a particular 
moment 
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Random processes 

• A random process at a moment n can be described using a CDF 
dependent on n: 

 
and if it is continuous, it can also be described using a PDF 
dependent on n: 

 
 

• The values of Xn are generally mutually dependent, and to fully 
describe a random process we should know a joint CDF for any 
subset of moments:  

 
 

 In practice this function is most often unknown, and we describe random 
processes using statistical parameters such as mean and autocorrelation 
function 
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Stationarity of a random process 

• A random process is (strict-sense) stationary if its joint CDF does 
not change in time, i.e. if, for any integer k, the following holds: 

 

 

 
 There are many random processes for which this does not hold, and 

which go through various states, in which their statistical properties may 
be quite different 
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Mean and autocorrelation function 

• The mean of a random process is its mathematical expectation: 
 
 

and if it does not depend on n, the process is stationary with 
respect to its mean 

• The autocorrelation function of a random process is the measure 
of the similarity of its values at the time instants n and n+k: 

 

 

and if it depends solely on k, the process is stationary with 
respect to its autocorrelation function  

• A process stationary both in terms of its mean and its 
autocorrelation function is considered wide-sense stationary 
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Variance 

• The variance of a wide-sense stationary (WSS) random process 
is the measure of its expected deviation from its mean: 

 

 

 

 

 

 

 

 

• If mX = 0, the variance is equal to the average power of the 
signal 
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Estimation of statistical parameters 

• We usually have only one member of the statistical ensemble 
x(n) at our disposal, from which we should infer the values of 
the statistical parameters of a WSS random process 

• The mean of the discrete signal x(n) is: 

 
and its autocorrelation is: 

 
and if the process is ergodic, they are equal to the ensemble 
mean and autocorrelation function 

• In practice we cannot calculate either of these parameters 
because we would need to know infinitely many values of signal 
samples and calculate infinite sums 
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Examples of parameter estimation 

Mean estimation 

• The standard estimate of the mean is: 

 
 

• This estimate is unbiased (its expectation is equal to the actual 
mean       ):  

 

 

• This estimate is also consistent (variance goes to 0 when N goes 
to infinity) 
 Consistency is a highly desirable property of an estimate because with a 

consistent estimate we can expect the same result from any member of 
the ensemble 
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Examples of parameter estimation 

Estimation of the autocorrelation function 

• The standard estimate of the autocorrelation function is: 

 
 

• This estimate is biased (its expectation is not equal to the actual 
autocorrelation function           ): 

 

 

 but it is asymptotically unbiased (its expectation converges to 
            as N approaches infinity) 

• This estimate is consistent 

11 

)(krXX

    )(1)(
11

)(ˆ
1

0

1

0

kr
N

k
kr

N
XXE

N
krE XX

kN

n
XX

kN

n
knnxx 








 











)()(
1

)(ˆ
1

0

knxnx
N

kr
kN

n
xx  





)(krXX



Spectrum of a discrete-time random process 

• Discrete-time random signals have infinite energy and thus have 
no DTFT, and we cannot calculate the energy spectral density 
(which is equal to the square of the magnitude spectrum) 

• Discrete-time random signals have finite average power: 

 

 

and it is possible to define their power spectral density (power 
spectrum), by analogy with a corresponding definition for 
deterministic signals: 
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Spectrum of a discrete-time random process 

• Power spectral density (PSD) is equal to the Fourier transform of 
the autocorrelation function: 

 

 
and it is a real, non-negative function, and in the case of real 
signals also even 

• The estimation of power spectral density is one of the most 
frequent and most important tasks in digital signal processing 
 The problem is that we usually have only one member of the statistical 

ensemble at our disposal, and we usually know the values of only a 
limited number of its samples 
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Methods for power spectrum estimation 

Non-parametric (classical) methods 

• The spectrum is directly calculated by applying DTFT to 
either a finite-length segment of the input singal or its 
autocorrelation 

• We do not introduce any assumptions as to the shape of 
the power spectrum 

Parametric methods 

• We introduce a model of power spectral density function 
and the problem amounts to the estimation of the 
parameters of this model 

• If an adequate model is used, these methods can give much 
better results than non-parametric ones, particularly if only 
a short segment of the input signal is available 
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• The estimation of SX (ω) is more accurate if a longer segment of the 
input signal is available (as was the case with deterministic signals) 

 

 

 

 

 

 

 
• If N is too small, we can increase the density of DFT samples by zero 

padding, although this does not affect frequency resolution 

 Zero padding, as a means for increasing the density of DFT samples is of 
particular importance for non-stationary signals 

 

 

 

 

Non-parametric methods for estimating SX (ω) 
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Example: estimation of 
the power spectrum of 
a signal composed from 
two sinusoids 
contaminated with 
noise 

N = 16 

N = 32 

N = 64 



• Direct estimate based on the definition of SX (ω), with the 
time range limited to the interval from 0 to N−1: 

 

 

 

which is a real, non-negative function, and in the case of 
real signals also even, just as was the case for SX (ω) 

 

 

 

 

 

 

 
 

 

 

 

Periodogram 
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• Periodogram represents the Fourier transform of the standard 
estimate of the autocorrelation function of a random process 

 

 

 

 

 

 
 

 

 

 

Periodogram 
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• The expectation of the periodogram ŜX(ω) is not equal to the actual 

power spectrum SX(ω) = DTFT{rXX(k)}, but to DTFT{rXX(k)wB(k)}, 
where wB(k) is the triangular window function  
 Periodogram is a biased estimate of SX(ω), but still asymptotically unbiased 

• When estimating SX(ω) on the basis of a periodogram, the problem 
of spectral leakage occurs 

 

 

 

 

 
 

 

 

 

Properties of the periodogram 
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• Variance of the periodogram ŜX(ω) for large values of N in most 
cases of practical interest is proportional to the square of SX(ω) 

 

 

 Periodogram is an inconsistent estimate of SX(ω), which means that 
it can greatly depend on the realization of the random process 

 Due to its inconsistency, periodogram is not considered to be a 
high quality estimate of SX(ω) 

 An idea: to split the available segment of the input signal into K 
equal parts, to calculate the periodogram on each of them and to 
calculate the average of the results 

Properties of the periodogram 
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• Let the available segment of the input signal x(n) of length N be 
divided into K equal parts of length M = N/K, with no overlap 
(basic version, proposed by Bartlett) 

• Let              be the periodogram calculated on the i-th segment: 

 

 
• The averaged periodogram is obtained as the average of thus 

obtained K periodograms: 

 

 

Periodogram averaging 
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• Mathematical expectation of            is equal to the mathematical 
expectation of a single periodogram            : 

 

 

and since the triangular window function is now K times shorter, 
the frequency resolution is also K times worse 

• The variance is reduced by a factor of K with respect to the 
standard periodogram (the variance of the mean of K identically 
distributed random variables is K times smaller than the variance of 
a single one of them): 

 
• By averaging in this way, we have improved the consistency of the 

estimate at the expense of the frequency resolution 

Properties of the averaged periodogram 
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• The basic idea of Bartlett can be modified in two ways (both proposed by 
Welch): 

 Consecutive segments can overlap 

• This increases the number of segments and decreases variance further 

• Overlap should not be too significant because that would undermine the 
assumption of independence between consecutive segments (if the 
overlap is above 50% the variance will abruptly stop decreasing) 

 Every segment xi(n) can be shaped by applying a non-rectangular window 
function before calculating the periodogram 

• This reduces the correlation between consecutive segments, and also 
mitigates the problem of lower reliability of the estimate of 
autocorrelation function for large k 

• Without affecting the frequency resolution, the variance is now lower: 
for a large N it still behaves as               , but K is now greater owing to the 
overlap 

Modifications of the averaged periodogram 
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• The idea is based on windowing the estimate of the autocorrelation 
function (as proposed by Blackman and Tukey): 

 This reduces the influence of less reliable values of           , obtained for  
large 

 
• Mathematical expectation of a thus smoothed periodogram is: 

 

 
 

where w(k) is usually much shorter than wB(k), and thus the influence 
of convolution with WB(ω) is negligible 

• The resulting spectral leakage depends on W(ω) 

 The choice of W(ω) affects the trade-off between the variance and the 
frequency resolution 

Periodogram smoothing 
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• We introduce a model of the random process, and the problem of estimating 
SX (ω) amounts to the problem of estimating model parameters 

• We assume that the signal x(n) is the output of an LTI system with transfer 
function: 

 

 
 

where the input is white noise s(n) of zero mean and variance (average 
power) equal to σ2 

 The term white implies that the samples of noise are mutually 
uncorrelated, i.e.: 

 

• This reduces the problem to the modeling of a system 

• Power spectral density of the output signal is equal to: 

 

 

 

 

 

 
 

 

 

 

Parametric methods for estimating SX (ω) 
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• First we need to choose the values for 
p and q, and then to estimate ai and bi 

 q = 0: AR (autoregressive) models 

 p = 0: MA (moving average) models 

 q ≠ 0, p ≠ 0: ARMA models 

• The choice is usually based on some previous knowledge of the 
random process 
 Owing to their simplicity, AR models are most commonly used (the others 

yield non-linear systems of equations) 

 An example of a problem where AR is the obvious solution is the signal 
which is composed of a sinusoid of an unknown frequency and noise 

• Poles of the model should match the unknown frequency of the 
sinusoid 
 

 

 

Parametric methods for estimating SX (ω) 
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Estimation of SX (ω) for AR random processes 
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h(m) exists only for m ≥ 0, and 
thus for k ≥ 0 the only case 
when the right sum is non-zero 
is when k = m = 0 

we assume k ≥ 0, and 
the values for negative 
k can be easily found 
because rXX(k) is even  

we have used h(0) = 1, which 
follows from B(z) = 1 



• Coefficients ai and σ2 are the solutions of the Yule-Walker equations: 

 

 
 
 

 

• The system matrix is a symmetrical Toeplitz matrix (each descending 
diagonal from left to right is constant), and thus the system can be solved 
efficiently, in N2 instead of N3 time, using the Levinson-Durbin algorithm 

 The same matrix is obtained if the problem is posed as a linear prediction 
problem, i.e. if the following is assumed:   

 
• In practice the autocorrelation function rXX(k) is not available and we only 

have its estimate, but the values of this estimate for k ≤ p are still much 
more reliable than the values for relatively large k 

Estimation of SX (ω) for AR random processes 
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