
SPECTRAL ANALYSIS 
OF DISCRETE-TIME SIGNALS 



Random discrete signals  

• Exact values are unknown outside of the range 
in which the signal is observed 

• Described through statistical parameters 

 This approach is sensible for many real-world 
signals, which occur as a consequence of mutual 
interaction of a number a complex causes 

• A random signal is one specific realization of a 
random process 

 A discrete-time random process       represents a 
time series of random variables 
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Statistical ensemble 

• A set of all possible 
realizations of a  
random process 

 different signals but 
same statistical 
properties 
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Random variables and random processes 

• A random variable can be described 
through its cumulative probability 
distribution function (CDF): 

 
and if it is continuous, it can also be 
described through its probability 
density function (PDF): 

 

 

• In this way we can also describe any 
random process at a particular 
moment 
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Random processes 

• A random process at a moment n can be described using a CDF 
dependent on n: 

 
and if it is continuous, it can also be described using a PDF 
dependent on n: 

 
 

• The values of Xn are generally mutually dependent, and to fully 
describe a random process we should know a joint CDF for any 
subset of moments:  

 
 

 In practice this function is most often unknown, and we describe random 
processes using statistical parameters such as mean and autocorrelation 
function 
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Stationarity of a random process 

• A random process is (strict-sense) stationary if its joint CDF does 
not change in time, i.e. if, for any integer k, the following holds: 

 

 

 
 There are many random processes for which this does not hold, and 

which go through various states, in which their statistical properties may 
be quite different 
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Mean and autocorrelation function 

• The mean of a random process is its mathematical expectation: 
 
 

and if it does not depend on n, the process is stationary with 
respect to its mean 

• The autocorrelation function of a random process is the measure 
of the similarity of its values at the time instants n and n+k: 

 

 

and if it depends solely on k, the process is stationary with 
respect to its autocorrelation function  

• A process stationary both in terms of its mean and its 
autocorrelation function is considered wide-sense stationary 
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Variance 

• The variance of a wide-sense stationary (WSS) random process 
is the measure of its expected deviation from its mean: 

 

 

 

 

 

 

 

 

• If mX = 0, the variance is equal to the average power of the 
signal 
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Estimation of statistical parameters 

• We usually have only one member of the statistical ensemble 
x(n) at our disposal, from which we should infer the values of 
the statistical parameters of a WSS random process 

• The mean of the discrete signal x(n) is: 

 
and its autocorrelation is: 

 
and if the process is ergodic, they are equal to the ensemble 
mean and autocorrelation function 

• In practice we cannot calculate either of these parameters 
because we would need to know infinitely many values of signal 
samples and calculate infinite sums 
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Examples of parameter estimation 

Mean estimation 

• The standard estimate of the mean is: 

 
 

• This estimate is unbiased (its expectation is equal to the actual 
mean       ):  

 

 

• This estimate is also consistent (variance goes to 0 when N goes 
to infinity) 
 Consistency is a highly desirable property of an estimate because with a 

consistent estimate we can expect the same result from any member of 
the ensemble 
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Examples of parameter estimation 

Estimation of the autocorrelation function 

• The standard estimate of the autocorrelation function is: 

 
 

• This estimate is biased (its expectation is not equal to the actual 
autocorrelation function           ): 

 

 

 but it is asymptotically unbiased (its expectation converges to 
            as N approaches infinity) 

• This estimate is consistent 
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Spectrum of a discrete-time random process 

• Discrete-time random signals have infinite energy and thus have 
no DTFT, and we cannot calculate the energy spectral density 
(which is equal to the square of the magnitude spectrum) 

• Discrete-time random signals have finite average power: 

 

 

and it is possible to define their power spectral density (power 
spectrum), by analogy with a corresponding definition for 
deterministic signals: 
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Spectrum of a discrete-time random process 

• Power spectral density (PSD) is equal to the Fourier transform of 
the autocorrelation function: 

 

 
and it is a real, non-negative function, and in the case of real 
signals also even 

• The estimation of power spectral density is one of the most 
frequent and most important tasks in digital signal processing 
 The problem is that we usually have only one member of the statistical 

ensemble at our disposal, and we usually know the values of only a 
limited number of its samples 
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Methods for power spectrum estimation 

Non-parametric (classical) methods 

• The spectrum is directly calculated by applying DTFT to 
either a finite-length segment of the input singal or its 
autocorrelation 

• We do not introduce any assumptions as to the shape of 
the power spectrum 

Parametric methods 

• We introduce a model of power spectral density function 
and the problem amounts to the estimation of the 
parameters of this model 

• If an adequate model is used, these methods can give much 
better results than non-parametric ones, particularly if only 
a short segment of the input signal is available 
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• The estimation of SX (ω) is more accurate if a longer segment of the 
input signal is available (as was the case with deterministic signals) 

 

 

 

 

 

 

 
• If N is too small, we can increase the density of DFT samples by zero 

padding, although this does not affect frequency resolution 

 Zero padding, as a means for increasing the density of DFT samples is of 
particular importance for non-stationary signals 

 

 

 

 

Non-parametric methods for estimating SX (ω) 
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• Direct estimate based on the definition of SX (ω), with the 
time range limited to the interval from 0 to N−1: 

 

 

 

which is a real, non-negative function, and in the case of 
real signals also even, just as was the case for SX (ω) 

 

 

 

 

 

 

 
 

 

 

 

Periodogram 
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• Periodogram represents the Fourier transform of the standard 
estimate of the autocorrelation function of a random process 

 

 

 

 

 

 
 

 

 

 

Periodogram 
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• The expectation of the periodogram ŜX(ω) is not equal to the actual 

power spectrum SX(ω) = DTFT{rXX(k)}, but to DTFT{rXX(k)wB(k)}, 
where wB(k) is the triangular window function  
 Periodogram is a biased estimate of SX(ω), but still asymptotically unbiased 

• When estimating SX(ω) on the basis of a periodogram, the problem 
of spectral leakage occurs 

 

 

 

 

 
 

 

 

 

Properties of the periodogram 
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• Variance of the periodogram ŜX(ω) for large values of N in most 
cases of practical interest is proportional to the square of SX(ω) 

 

 

 Periodogram is an inconsistent estimate of SX(ω), which means that 
it can greatly depend on the realization of the random process 

 Due to its inconsistency, periodogram is not considered to be a 
high quality estimate of SX(ω) 

 An idea: to split the available segment of the input signal into K 
equal parts, to calculate the periodogram on each of them and to 
calculate the average of the results 

Properties of the periodogram 
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• Let the available segment of the input signal x(n) of length N be 
divided into K equal parts of length M = N/K, with no overlap 
(basic version, proposed by Bartlett) 

• Let              be the periodogram calculated on the i-th segment: 

 

 
• The averaged periodogram is obtained as the average of thus 

obtained K periodograms: 

 

 

Periodogram averaging 
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• Mathematical expectation of            is equal to the mathematical 
expectation of a single periodogram            : 

 

 

and since the triangular window function is now K times shorter, 
the frequency resolution is also K times worse 

• The variance is reduced by a factor of K with respect to the 
standard periodogram (the variance of the mean of K identically 
distributed random variables is K times smaller than the variance of 
a single one of them): 

 
• By averaging in this way, we have improved the consistency of the 

estimate at the expense of the frequency resolution 

Properties of the averaged periodogram 
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• The basic idea of Bartlett can be modified in two ways (both proposed by 
Welch): 

 Consecutive segments can overlap 

• This increases the number of segments and decreases variance further 

• Overlap should not be too significant because that would undermine the 
assumption of independence between consecutive segments (if the 
overlap is above 50% the variance will abruptly stop decreasing) 

 Every segment xi(n) can be shaped by applying a non-rectangular window 
function before calculating the periodogram 

• This reduces the correlation between consecutive segments, and also 
mitigates the problem of lower reliability of the estimate of 
autocorrelation function for large k 

• Without affecting the frequency resolution, the variance is now lower: 
for a large N it still behaves as               , but K is now greater owing to the 
overlap 

Modifications of the averaged periodogram 
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• The idea is based on windowing the estimate of the autocorrelation 
function (as proposed by Blackman and Tukey): 

 This reduces the influence of less reliable values of           , obtained for  
large 

 
• Mathematical expectation of a thus smoothed periodogram is: 

 

 
 

where w(k) is usually much shorter than wB(k), and thus the influence 
of convolution with WB(ω) is negligible 

• The resulting spectral leakage depends on W(ω) 

 The choice of W(ω) affects the trade-off between the variance and the 
frequency resolution 

Periodogram smoothing 
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• We introduce a model of the random process, and the problem of estimating 
SX (ω) amounts to the problem of estimating model parameters 

• We assume that the signal x(n) is the output of an LTI system with transfer 
function: 

 

 
 

where the input is white noise s(n) of zero mean and variance (average 
power) equal to σ2 

 The term white implies that the samples of noise are mutually 
uncorrelated, i.e.: 

 

• This reduces the problem to the modeling of a system 

• Power spectral density of the output signal is equal to: 

 

 

 

 

 

 
 

 

 

 

Parametric methods for estimating SX (ω) 
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• First we need to choose the values for 
p and q, and then to estimate ai and bi 

 q = 0: AR (autoregressive) models 

 p = 0: MA (moving average) models 

 q ≠ 0, p ≠ 0: ARMA models 

• The choice is usually based on some previous knowledge of the 
random process 
 Owing to their simplicity, AR models are most commonly used (the others 

yield non-linear systems of equations) 

 An example of a problem where AR is the obvious solution is the signal 
which is composed of a sinusoid of an unknown frequency and noise 

• Poles of the model should match the unknown frequency of the 
sinusoid 
 

 

 

Parametric methods for estimating SX (ω) 
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Estimation of SX (ω) for AR random processes 
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h(m) exists only for m ≥ 0, and 
thus for k ≥ 0 the only case 
when the right sum is non-zero 
is when k = m = 0 

we assume k ≥ 0, and 
the values for negative 
k can be easily found 
because rXX(k) is even  

we have used h(0) = 1, which 
follows from B(z) = 1 



• Coefficients ai and σ2 are the solutions of the Yule-Walker equations: 

 

 
 
 

 

• The system matrix is a symmetrical Toeplitz matrix (each descending 
diagonal from left to right is constant), and thus the system can be solved 
efficiently, in N2 instead of N3 time, using the Levinson-Durbin algorithm 

 The same matrix is obtained if the problem is posed as a linear prediction 
problem, i.e. if the following is assumed:   

 
• In practice the autocorrelation function rXX(k) is not available and we only 

have its estimate, but the values of this estimate for k ≤ p are still much 
more reliable than the values for relatively large k 

Estimation of SX (ω) for AR random processes 
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