DISCRETE FOURIER TRANSFORM

Calculation of the spectrum in practice

$$
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

- We should find a way to calculate (at least approximately) the Fourier transform of any signal on a computer (or a DSP)
- This implies the following:
- The spectrum should be calculated on the basis of the samples of the input signal
- Only a finite number of samples should be used for calculation
- The results should be obtained as a discrete array of values
- The calculation should be performed as efficiently as possible (in terms of speed and memory)
- The influence of the finite word length should be minimized

Calculation of the spectrum in practice

Limiting the duration of the signal (windowing)

Calculation of the spectrum in practice

Sampling of the signal

- Calculation of the spectrum on the basis of signal samples is equivalent to using DTFT instead of classical FT

$$
\bar{X}(f)=\int_{-\infty}^{\infty} \bar{x}(t) e^{-j 2 \pi f t} d t \quad \rightarrow \quad \bar{X}(\xi)=\sum_{n=-\infty}^{\infty} \bar{x}(n) e^{-j 2 \pi \xi n}
$$

Calculation of the spectrum in practice

Sampling of the signal

- The expression for DTFT is obtained from the expression for the spectrum of a sampled continuous-time signal:

$$
\hat{X}(f)=\sum_{n=-\infty}^{\infty} x(n T) e^{-j 2 \pi f n T}=\frac{1}{T} \sum_{m=-\infty}^{\infty} x\left(f-m f_{s}\right)
$$

- If the condition of the sampling theorem is not met, aliasing occurs (copies of the original spectrum overlap)
- The high-frequency region of the spectrum is usually the one more affected by aliasing
- It becomes impossible to extract the original spectrum even by using an ideal low-pass filter

Calculation of the spectrum in practice

Spectrum discretization

- Spectrum is calculated only in a finite number of points $\xi_{k}=k / N, k=0,1, \ldots N-1$.

$$
X(k)=\sum_{n=0}^{N-1} x_{p}(n) e^{-j 2 \pi \frac{k}{N} n} \quad x_{p}(n)=\sum_{m=-\infty}^{\infty} \bar{x}(n-m N)
$$

Calculation of the spectrum in practice

Influence of windowing

$$
\begin{aligned}
& \bar{X}(n)=x(n) w(n) \\
& \bar{X}(\xi)=\sum_{n=-\infty}^{\infty} x(n) w(n) e^{-j 2 \pi \xi n}=\sum_{n=0}^{N-1} x(n) w(n) e^{-j 2 \pi \xi n} \approx X(\xi) \\
& \bar{X}(\xi)=X(\xi) \circledast W(\xi)=\int_{-1 / 2}^{1 / 2} X(\lambda) W(\xi-\lambda) d \lambda
\end{aligned}
$$

- Convolution distorts the original spectrum
- This influence will be analyzed for the discrete-time case, which does not make a big difference

Rectangular window function

$w(n)=\left\{\begin{array}{lc}1, & 0 \leq n \leq N-1 \\ 0, & \text { elsewhere }\end{array}\right.$
$W(z)=\sum_{n=0}^{N-1} z^{-n}=\frac{1-z^{-N}}{1-z^{-1}}$
$W(\omega)=\frac{1-e^{-j N \omega}}{1-e^{-j \omega}}=\frac{\sin \frac{N \omega}{2}}{\sin \frac{\omega}{2}} e^{-j \frac{N-1}{2} \omega}$

Zeros of $W(\omega)$ are located at frequencies $\omega=\frac{2 \pi}{N} k, \quad k= \pm 1, \pm 2, \ldots$
$\left|\frac{W(\omega)}{W(0)}\right|_{\omega=\frac{3 \pi}{N}}=\left|\frac{\sin 3 \pi / 2}{\sin 3 \pi / 2 N}\right|: N \approx \frac{1}{N \cdot 3 \pi / 2 N}=\frac{2}{3 \pi} \approx 0,21 \quad 20 \log (0,21) \approx-13 \mathrm{~dB}$

Frequency resolution

- The width of the main arcade of the window function defines the frequency resolution
- The minimum distance between two components which will still be distinguishable in the spectrum is:

$$
\Delta \omega \geq \frac{2 \pi}{N} \quad \Delta f \geq \frac{f_{s}}{N}=\frac{1}{N T}=f_{2}-f_{1}[\mathrm{~Hz}]
$$

Frequency resolution

- Minimum length of the rectangular window function for the desired frequency resolution $\Delta f(\Delta \omega)$ is:

$$
N \geq \frac{f_{s}}{\Delta f}=\frac{2 \pi}{\Delta \omega}
$$

- How to improve frequency resolution (reduce $\Delta f=f_{s} / N$)?
- Decrease f_{s} (increases the effects of sampling)
- Increase N (requires more calculations, and sometimes it is not even possible due to limited availability of samples)
- Improved frequency resolution decreases temporal resolution

Spectral leakage (DTFT)

- Consequence of the existence of side lobes in the spectrum of the window function
- The spectrum of the windows signal may contain components even at frequencies at which the original spectrum was zero
- Main arcades of weaker spectral component may be completely hidden

- The effect may be reduced by using better window functions
- There are window functions with sidelobes suppressed by nearly 100 dB

Spectral leakage (DFT)

- It remains to be seen whether the DFT samples of the DTFT spectrum will faithfully represent the amplitudes of peaks in the DTFT spectrum
- Convolution of the spectrum of the window function with a component in the original spectrum should appear at the location of a DFT sample
- DFT samples are located at frequencies $\omega_{k}=2 k \pi / N$
- The components in the original spectrum should also appear at $\omega_{k}=2 k \pi / N$ in order to be faithfully represented by the DFT spectrum

$$
f_{0}=k \frac{f_{s}}{N}
$$

Bartlett (triangular) prozorska funkcija

$$
w(n)=\left\{\begin{array}{cc}
\frac{2 n}{N-1}, & 0 \leq n \leq \frac{N-1}{2} \\
2-\frac{2 n}{N-1}, & \frac{N-1}{2}<n \leq N-1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

- Side lobes are attenuated by 26 dB
- Main lobe is approximately twice as wide, which deteriorates frequency resolution approximately twice
- This can be compensated by taking twice as many samples

$$
\Delta \omega \geq \frac{4 \pi}{N} \quad \Delta f \geq 2 \frac{f_{s}}{N} \quad N \geq 2 \frac{f_{s}}{\Delta f}
$$

Some other window functions

Hann window function

$$
w(n)=\left\{\begin{array}{cc}
0,5-0,5 \cos \frac{2 \pi n}{N-1}, & 0 \leq n \leq N-1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

- Side lobe attenuation: 31 dB
- Frequency resolution as with Bartlett window

Hamming window function

$$
w(n)=\left\{\begin{array}{cc}
0,54-0,46 \cos \frac{2 \pi n}{N-1}, & 0 \leq n \leq N-1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

- Side lobe attenuation: 43 dB
- Frequency resolution as with Bartlett window

Spectra of window functions

Frequency resolution (example 1)

- The signal containing 4 sinusoids at frequencies $1,1.5$, 2.5 and 2.75 kHz , is sampled with $f_{s}=10 \mathrm{kHz}$. What is the minimum number of samples of this signal to be taken for the 4 spectral peaks to remain visible:
a) if rectangular window is used;
b) if Hamming window is used?
a) $N \geq \frac{f_{s}}{\Delta f}=\frac{10}{0.25}=40$ samples
b) $N \geq 2 \frac{f_{s}}{\Delta f}=\frac{20}{0.25}=80$ samples

Frequency resolution (example 2)

- A $10-\mathrm{ms}$ segment of a continuous-time signal is sampled with $f_{s}=10 \mathrm{kHz}$. The signal contains sinusoids at $f_{1}=1 \mathrm{kHz}$ and $f_{2}=2 \mathrm{kHz}$ as well as at a frequency f_{3} which lies between f_{1} and f_{2}. How close can f_{3} get to f_{1} or f_{2}, for individual spectral peaks to remain visible, if a rectangular window is used?

$$
\begin{aligned}
& N=f_{s} \cdot \Delta t=10 \mathrm{kHz} \cdot 10 \mathrm{~ms}=100 \text { samples } \\
& \Delta f=\frac{f_{s}}{N}=100 \mathrm{~Hz} \\
& f_{1}+\Delta f=1.1 \mathrm{kHz} \leq f_{3} \leq 1.9 \mathrm{kHz}=f_{2}-\Delta f
\end{aligned}
$$

How to obtain a discrete spectrum?

- Discrete nature of a spectrum generally comes from periodicity in the signal
- Periodic continous-time signals can have infinitely many harmonics in the spectrum
- Periodic discrete-time signals can have only a finite number of them
- k-th component in the spectrum corresponds to the frequency $2 k \pi / N$
- After N components they begin repeating

$$
x_{p}(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2 \pi}{N} n k}
$$

Fourier expansion of a periodic signal

$$
\begin{aligned}
& x_{p}(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2 \pi}{N} n k} \quad \text { What are the values } \\
& \begin{aligned}
& x_{p}(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-n k} \quad W_{N}=e^{-j \frac{2 \pi}{N}} \\
& \begin{aligned}
\sum_{n=0}^{N-1} x_{p}(n) W_{N}^{n r} & =\frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} X(k) W_{N}^{-(k-r) n} \\
& =\sum_{k=0}^{N-1} X(k)\left[\frac{1}{N} \sum_{n=0}^{N-1} W_{N}^{-(k-r) n}\right]=X(r)
\end{aligned} \\
& X(k)=\sum_{n=0}^{N-1} x_{p}(n) W_{N}^{n k}
\end{aligned}
\end{aligned}
$$

Discrete Fourier transform (DFT)

- Mapping of a periodic discrete signal $x(n)$ of period N into a sequence of complex numbers:

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi}{N} n k}
$$

- The obtained sequence is also periodic with period N
- Inverse DFT is given by:

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} x(k) e^{j \frac{2 \pi}{N} n k}
$$

Relationship between DFT and FTD

- DFT actually represents a discrete version of DTFT, since:

$$
X(k)=\left.\bar{X}(\omega)\right|_{\omega=k \frac{2 \pi}{N}}
$$

where $\bar{x}(n)$ is the signal which contains only the initial period of the signal $x(n)$

Properties of DFT

Periodicity

$$
X(k)=X(k+N)
$$

Linearity

$$
\operatorname{DFT}\{a x(n)+b y(n)\}=a X(k)+b Y(k)
$$

Time shifting

$$
\operatorname{DFT}\{x(n-m)\}=e^{-j \frac{2 \pi}{N} k m} X(k)
$$

Modulation

$$
\operatorname{DFT}\left\{e^{j \frac{2 \pi}{N} n l} x(n)\right\}=X(k-l)
$$

Properties of DFT

DFT of a real signal

If the discrete-time signal $x(n)$ is real,
$X(N-k)=X(-k)=X^{*}(k) \quad$ (Hermitian symmetry)
This amounts to: $\operatorname{Re}\{X(-k)\}=\operatorname{Re}\{X(k)\}$

$$
\operatorname{Im}\{X(-k)\}=-\operatorname{Im}\{X(k)\}
$$

which is equivalent to:

$$
\begin{aligned}
& |X(-k)|=|X(k)| \\
& \arg \{X(-k)\}=-\arg \{X(k)\}
\end{aligned}
$$

Properties of DFT

Transform of convolution

$$
\operatorname{DFT}\{x(n) \circledast y(n)\}=X(k) Y(k)
$$

Transform of product

$$
\operatorname{DFT}\{x(n) y(n)\}=\frac{1}{N} X(k) \circledast Y(k)
$$

Parseval's theorem

$$
\sum_{n=0}^{N-1}|x(n)|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|X(k)|^{2}
$$

