
DISCRETE FOURIER TRANSFORM 



Calculation of the spectrum in practice 

 

 
 

• We should find a way to calculate (at least approximately) the 
Fourier transform of any signal on a computer (or a DSP) 

• This implies the following: 

 The spectrum should be calculated on the basis of the samples 
of the input signal 

 Only a finite number of samples should be used for calculation 

 The results should be obtained as a discrete array of values 

 The calculation should be performed as efficiently as possible  
(in terms of speed and memory) 

 The influence of the finite word length should be minimized 
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Limiting the duration of the signal (windowing) 
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Sampling of the signal 
 

 

 

 

 
• Calculation of the spectrum on the basis of signal samples 

is equivalent to using DTFT instead of classical FT 
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Sampling of the signal 
 

• The expression for DTFT is obtained from the expression 
for the spectrum of a sampled continuous-time signal: 

 

 

 

• If the condition of the sampling theorem is not met,  
aliasing occurs (copies of the original spectrum overlap) 

• The high-frequency region of the spectrum is usually the  
one more affected by aliasing 

• It becomes impossible to extract the original spectrum 
even by using an ideal low-pass filter 
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Spectrum discretization 

 

 

 

 
• Spectrum is calculated only in a finite number of 

points ξk = k/N, k = 0, 1,... N – 1. 
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Calculation of the spectrum in practice 



Influence of windowing 

 

 

 

 

 

• Convolution distorts the original spectrum 

• This influence will be analyzed for the discrete-time 
case, which does not make a big difference 
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Rectangular window function 
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Frequency resolution 

• The width of the main arcade of the window function 
defines the frequency resolution 

• The minimum distance between two components 
which will still be distinguishable in the spectrum is: 
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Frequency resolution 

• Minimum length of the rectangular window function for 
the desired frequency resolution Δf (Δω) is: 

 

 

 

• How to improve frequency resolution (reduce Δf =fs /N)? 

 Decrease fs (increases the effects of sampling) 

 Increase N (requires more calculations, and sometimes it is not 
even possible due to limited availability of samples)  

• Improved frequency resolution decreases temporal 
resolution  
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Spectral leakage (DTFT) 

• Consequence of the existence of side lobes in the spectrum 
of the window function 

• The spectrum of the windows signal may contain components 
even at frequencies at which the original spectrum was zero 
 Main arcades of weaker spectral component may be completely hidden 

 

 

 

 

 

• The effect may be reduced by using better window functions 
 There are window functions with sidelobes suppressed by nearly 100 dB 
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Spectral leakage (DFT) 

• It remains to be seen whether the DFT samples of the DTFT 
spectrum will faithfully represent the amplitudes of peaks in 
the DTFT spectrum 
 Convolution of the spectrum of the window function with a component 

in the original spectrum should appear at the location of a DFT sample 

 DFT samples are located at frequencies ωk = 2kπ/N 

 The components in the original spectrum should also appear at  
ωk = 2kπ/N in order to be faithfully represented by the DFT spectrum 
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Bartlett (triangular) prozorska funkcija 
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• Side lobes are attenuated by 26 dB  

• Main lobe is approximately twice as wide, which deteriorates 
frequency resolution approximately twice 

 This can be compensated by taking twice as many samples 
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Hamming window function 

 

 

 

• Side lobe attenuation: 43 dB 

• Frequency resolution as with Bartlett window 

 

 

Some other window functions 

Hann window function 

 

 

 

• Side lobe attenuation: 31 dB 

• Frequency resolution as with Bartlett window 
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Spectra of window functions 
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Frequency resolution (example 1) 

• The signal containing 4 sinusoids at frequencies 1, 1.5,  
2.5 and 2.75 kHz, is sampled with fs = 10 kHz. What is the 
minimum number of samples of this signal to be taken for 
the 4 spectral peaks to remain visible: 
a) if rectangular window is used;  
b) if Hamming window is used? 
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Frequency resolution (example 2) 

• A 10-ms segment of a continuous-time signal is sampled 
with fs = 10 kHz. The signal contains sinusoids at f1 = 1 kHz 
and f2 = 2 kHz as well as at a frequency f3 which lies 
between f1 and f2. How close can f3 get to f1 or f2, for 
individual spectral peaks to remain visible, if a rectangular 
window is used? 
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How to obtain a discrete spectrum? 

• Discrete nature of a spectrum generally comes from periodicity 
in the signal 

 Periodic continous-time signals can have infinitely many harmonics  
in the spectrum 

 Periodic discrete-time signals can have only a finite number of them 

• k-th component in the spectrum corresponds to the frequency 2kπ/N 

• After N components they begin repeating 
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Fourier expansion of a periodic signal 
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What are the values of coefficients X(k)? 



Discrete Fourier transform (DFT) 

• Mapping of a periodic discrete signal x(n) of period N 
into a sequence of complex numbers: 

 

 
 

• The obtained sequence is also periodic with period N 

• Inverse DFT is given by: 
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Relationship between DFT and FTD 

• DFT actually represents a discrete version of DTFT, 
since: 
 

 

 where          is the signal which contains only the initial 
period of the signal x(n) 
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Properties of DFT 
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Periodicity 

 
Linearity 

 
Time shifting 

 
Modulation 
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Properties of DFT 

 

 

 

DFT of a real signal 

 If the discrete-time signal x(n) is real, 

 
 This amounts to: 

 

  which is equivalent to:  
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Properties of DFT 

 

 

 

Transform of convolution 

 
Transform of product 

 
Parseval’s theorem 
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