
Z-TRANSFORM 



Laplace transform 

 

 

 

 

 

• Simplifies the work with continuous-time signals 
and LTI systems 

• Laplace transform of the impulse response of an 
LTI continuous-time system represents its transfer 
function 
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Z-transform 

• Z-transform represents the following mapping 
of a discrete-time signal into a complex series: 

 

 

 

 

• There is also unilateral z-transform: 
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Region of convergence 
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• The region of convergence (ROC) is the set of 
complex values of z for which the definition sum of 
the z-transform converges 

 

 

 

4 



Rational z-transform 

 

 

 

• For a wide class of signals z-transform can be written as a 
rational function of z 

 
 

 

• When identifying zeros and poles, we assume that X(z) is 
irreducible 

• Zeros of ZT are the roots of the polinomial in the numerator (and 
ZT, if it exists there, is equal to 0) 

• Poles of ZT are the roots of the polinomial in the denominator 
(and ZT, if it exists in the neghbourhood, converges to infinity) 

• If the signal is real, zeros and poles are either real or they appear 
as complex conjugate pairs 
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Properties of z-transform 

 

 

 

Linearity 

 

 

Time shifting 

 

 

Scaling in the z-domain 
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Properties of z-transform 

 

 

 

Time reversal 

 

 

Differentiation 

 

 

Transform of convolution 
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Inverse z-transform 

 

 

 

• Inverse z-transform is given by 

 
 

• C is any counterclockwise closed path encircling the origin and 
entirely in the region of convergence (ROC) 

• The signal x(n) is more easily found using appropriate tables or 
the residue theory 
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Transfer function 

• Z-transform of the impulse response of an LTI system 

 

 
 

• H(z) can be written in the form of a rational function if 
and only if the IOR is a linear difference equation with 
constant coefficients 
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Typical shapes of the region of convergence 
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Typical shapes of the region of convergence 

• Finite duration signals 
 Infinite sum becomes finite: 

 
 

 This sum may not converge only for z = 0 or z  , 
thus ROC is (almost) the entire z-plane 

 These poles are considered trivial, as their influence 
on the behaviour of the system is limited to shifting 
the response in time 
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Typical shapes of the region of convergence 

• Causal infinite duration signals 

 

 

 

 

 

)(...)()()(
2211

nupAnupAnupAnx n

NN

nn 

Re

Im

p5p1

p3

p2

p4

12 



Typical shapes of the region of convergence 

• Anticausal infinite duration signals 
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Typical shapes of the region of convergence 

• General case 
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Stability 

• Any system is stable if the output signal y(n) remains 
bounded for each bounded input signal x(n) 

 This is referred to as BIBO (Bounded Input Bounded Output) 
stability 

• LTI system is stable  

 if and only if its impulse response is absolutely summable 
 

 
which obviously implies that the impulse response converges 
to 0 when n    

 if and only if the unit circle in the z-plain lies in the region of 
convergence 
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Stability 

• FIR systems 
 Impulse response is absolutely 

summable, so they are always stable 

 Canonical block diagram of realization 
contains no feedback (recursive) loops 

 Irreducible transfer function contains 
no non-trivial poles 
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Stability 

• Causal IIR systems 
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Stability 

• Anticausal IIR systems 
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Stability 

• Typical general case 
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Marginal stability 

• The unit circle represents the boundary of the region of 
convergence and all poles on the unit circle are distinct 

• Marginally stable systems are not BIBO stable 
 There is a bounded input signal which will result in unbounded 

output 

 For an impulse input, the output will be bounded but it will not 
return to zero 

• An example of such a system is the LTI system with impulse 
response h(n)=u(n) 
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