Z-TRANSFORM




Laplace transform

X(s) =L{x(t)} = [ x(t)e "dt

x(t)=L"{X(s)} = 1 VTOOX(s)e“ds
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e Simplifies the work with continuous-time signals
and LTI systems

* Laplace transform of the impulse response of an

LTI continuous-time system represents its transfer
function



e Z-transform represents the following mapping
of a discrete-time signal into a complex series:

X(2)=Z{x(n)} = S x(n)z”"

x(n)=Z"{X(2)}= i_u:f.)((z)z”‘idz
2T ¢

* There is also unilateral z-transform:

X(2)=2,{x(m)} = > x(n)z”



Region of convergence
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e The region of convergence (ROC) is the set of
complex values of z for which the definition sum of
the z-transform converges



Rational z-transform

For a wide class of signals z-transform can be written as a
rational function of z y
Y bz'

X(2)= Y x(n)z" =—=_
n=—e 1+ Zaiz"
i=1

When identifying zeros and poles, we assume that X(z) is
irreducible

Zeros of ZT are the roots of the polinomial in the numerator (and
ZT, if it exists there, is equal to 0)

Poles of ZT are the roots of the polinomial in the denominator
(and ZT, if it exists in the neghbourhood, converges to infinity)

If the signal is real, zeros and poles are either real or they appear
as complex conjugate pairs



Properties of z-transform

Linearity

Z{ax(n)+by(n)} =aX(z)+bY(z)

Time shifting
Z{x(n—m)}=2"X(2)

Scaling in the z-domain

Z{a"x(n)}=X(a '2)



Properties of z-transform

Time reversal

Z{x(—n)}=X(z")

Differentiation
dX(z)

dz

Z{nx(n)}=—-z

Transform of convolution

Zix(n)*y(n)} = X(z)Y(2)



Inverse z-transform

Inverse z-transform is given by

-1 1 £ n-1
x(n)=Z {X(z)}=M'£'X(z)z dz

C is any counterclockwise closed path encircling the origin and
entirely in the region of convergence (ROC)

The signal x(n) is more easily found using appropriate tables or
the residue theory

( Y. Res{X(z2)z"'},,, nz0
x(n :4 pj unutarC
= Y Res{X(z)z"},,, n<O
1 dm—l
Res{X(z)z"" = z—p )" X(2)z"
(X227, (m_l)![dzml( p)" X2 }



Transfer function

e Z-transform of the impulse response of an LTI system

e - x(n) *h(n)=y(n)
H(z)= 2 h(n)z X(2)H(2) =Y (2)

* H(z) can be written in the form of a rational function if
and only if the IOR is a linear difference equation with
constant coefficients

M N Yy Zbiz_i
D ayln—i)=> bx(n—i)  H(z)= o) _ =
o =1 X(z) 4, Y az”

i=1



Typical shapes of the region of convergence




Typical shapes of the region of convergence

* Finite duration signals

= |Infinite sum becomes finite:

X(2)= 3 x(n)z" = S x(n)z”

n=N1

" This sum may not converge only for z=0 or z - o,
thus ROC is (almost) the entire z-plane

= These poles are considered trivial, as their influence
on the behaviour of the system is limited to shifting
the response in time



Typical shapes of the region of convergence

e Causal infinite duration signals

x(n)=Apuln)+Ap u(ln)+...+ A p.u(n)




Typical shapes of the region of convergence

* Anticausal infinite duration signals

x(n)=B,q,u(—n—-1)+B,q;u(—n—-1)+...+ B, q, u(—n—1)
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Typical shapes of the region of convergence

e General case

x(n)=A,p/uln)+Apuln)+...+ A p.u(n)
+Bq,u(—n-1)+Bq,u(—n-1)+...+B,q, u(—n—-1)




Stability

e Any system is stable if the output signal y(n) remains
bounded for each bounded input signal x(n)

" This is referred to as BIBO (Bounded Input Bounded Output)
stability

* LTI system is stable
= if and only if its impulse response is absolutely summable

S h(n) < oo

which obviously implies that the impulse response converges
toOwhenn —> +

= if and only if the unit circle in the z-plain lies in the region of
convergence



Stability

* FIR systems

= Impulse response is absolutely i
summable, so they are always stable

= Canonical block diagram of realization ~ x» ‘,;bo S
contains no feedback (recursive) loops * X
. . . by
* |rreducible transfer function contains . 3
no non-trivial poles = !
b,
Y —j ] A?
—_— i=0 _ —I b1 :
H(z)= = Y bz ; S
1+ §q< =0 4
S
i=1 by




Stability

e Causal lIR systems

h(n)= A p/u(n)+Apuln)+...4+ A p.u(n)

stable unstable



Stability

* Anticausal IIR systems

h(n)=Bq,u(—n—-1)+Bq,u(-n—-1)+...+B q, u(—n—1)
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Stability

* Typical general case

h(n)=Ap/u(n)+ Ap u(n)+...4+ A, p.u(n)
+Bq,u(—n-1)+Bq,u(—n-1)+...+B,q, u(—n—-1)

stable unstable



Marginal stability

* The unit circle represents the boundary of the region of
convergence and all poles on the unit circle are distinct
* Marginally stable systems are not BIBO stable

= There is a bounded input signal which will result in unbounded
output

= For an impulse input, the output will be bounded but it will not
return to zero

* An example of such a system is the LTI system with impulse
response h(n)=u(n)

u(n)
1
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