

INTRODUCTION TO DIGITAL SIGNAL PROCESSING

Lecturer:

Milan Sečujski, PhD Faculty of Technical Sciences University of Novi Sad

DISCRETE-TIME SIGNALS AND SYSTEMS

- A measurable physical quantity used to transmit *messages*, i.e. *information*
- From a mathematical standpoint, a signal is no different than a *function* (a *mapping*)

Signal

- Independent variable: •
 - Time, space coordinate or something else
 - One or more independent variables
 - Continuous or discrete

6 7

- Dependent variable:
 - Set of real or complex numbers
 - Continuous or discrete

- Digital signals are not so easily damaged
 - any impairment that is small enough can be completely removed from the signal
- Digital data lends itself to new concepts:
 - error detection and correction
 - encryption
 - compression
 - time domain multiplex
 - digital signal processing

- Digital signals are not so easily damaged
 - any impairment that is small enough can be completely remov
- Digital data lends
 - error detection an
 - encryption
 - compression
 - time domain mult
 - digital signal proce

- Digital signals are not so easily damaged
 - any impairment that is small enough can be completely removed from the signal
- Digital data lends itself to new concepts:
 - error detection and c
 - encryption
 - compression
 - time domain multiple
 - digital signal processi

- Checksum
- Cyclic redundancy check (CRC)
- Codes based on Hamming distance
- *Hash* functions
- Turbo codes

. . .

- Digital signals are not conscilute
 - any impairment that completely removed
- Digital data lends itse
 - error detection and c
 - encryption
 - compression
 - time domain multiple
 - digital signal processi
- Symmetric encryption scrambling Asymmetric encryption secret and public key

- Digital signals are not
 - any impairment that completely removed
- Digital data lends itse
 - error detection and c
 - encryption
 - compression
 - time domain multiple
 - digital signal processi

- Compression
 - Iossless (ZIP, RAR...)
 - Iossy (JPG, MP3...)

- Digital signals are not contained
 - any impairment that completely removed
- Digital data lends its
 - error detection and
 - encryption
 - compression
 - time domain multiplex
 - digital signal processing

- Digital signals are not so <u>socily damaged</u>
 - any impairment that is sr completely removed fror
- Digital data lends itself t
 - error detection and correl
 - encryption
 - compression
 - time domain multiplex
 - digital signal processing

- Flexibility
- Programmability
- Accuracy
- Stability
- Repeatability
- Small dimensions
- Price

• Digital signals are not so

- Flexibility
- Programmability
- Accuracy
- Stability
- Repeatability
- Small dimensions

• Price

Some applications of digital signal processing

- Telephony and communication systems
 - Speech compression
 - Channel coding
 - Speech and data processing
 - Echo cancellation
 - Noise reduction
 - Encryption
 - Generation and detection of DTMF signals
 - Power consumption management
- Personal computers
 - Sound and image processing
 - Multimedia
 - Modem communications
 - Internet telephony and video
- Car industry
 - Engine control and monitoring
 - Parking assistance
 - Autonomous navigation
 - Active safety
- Security systems
 - User authentication
 - Video surveillance

- Speech technology
 - Text-to-speech synthesis
 - Automatic speech recognition
 - Automatic speaker recognition
 - Interactive human-machine dialogue
- Medical electronics
 - Intensive care monitoring
 - EKG and EEG analysis
 - Medical image processing
- Digital audio
 - CD and DVD
 - Sound compression
 - Sound reproduction standards
 - Digital audio-effects
 - Noise reduction in audio
 - Electronic music
- Digital television
 - Sound and image processing
 - Video on demand
 - TV signal encryption

Periodicity

The smallest such *N* is the *fundamental period* of the signal. If there is no such *N*, the signal is *aperiodic*.

Sinusoid signal

$$\exists A, \omega, \varphi \in \mathbf{R}, x(n) = A \sin(\omega n + \varphi)$$

Bounded signal

Even signal

Each discrete-time signal *x*(*n*) can be *uniquely represented* as a sum of one even and one odd signal

Odd signal

Causality

Wide-sende causality

Anticausality

$$\forall n > 0, x(n) = 0$$
 $(1 + 1)^n$

Wide-sense anticausality

Duration of discrete-time signals

Finite

$$\exists N_1, N_2 \in \mathbb{Z}$$

$$n < N_1 \lor n > N_2, x(n) = 0$$

$$(n < N_1 \lor n > N_2, x(n) = 0$$

If $x(N_1) \neq 0$ i $x(N_2) \neq 0$, the duration of the signal is $N_2 - N_1 + 1$.

Infinite

Discrete-time δ -impulse

$$\delta(n) = \begin{cases} 1, & n = 0 & 1 \\ 0, & n \neq 0 & \cdots & n \end{cases}$$

Each discrete-time signal can be written as a linear combination of δ -impulses shifted in time

Heaviside's impulse train

Some signals can be efficiently represented in terms of Heaviside's impulse train:

Plot the following signals against time:

$$x_{1}(n) = u(n) - 2u(n-3)$$

$$x_{2}(n) = (n+3)u(n)$$

$$x_{3}(n) = \sin(n\pi/2)u(-n)$$

$$x_{4}(n) = \sum_{k=0}^{\infty} \delta(n-3k)$$

$$x_{5}(n) = 2^{n}u(3-n)$$

Representation of discrete-time signals

Convolution

Linear convolution

$$V(n) = a(n) * b(n) = \sum_{k=-\infty}^{\infty} a(k)b(n-k)$$

- Does not always exist
- Sufficient condition for its existence is that either a(n) or b(n) should have finite duration
- If they are both of finite durations (N₁ and N₂ respectively), the duration of the signal *l*(*n*) is N₁+N₂-1
- Commutative operation, the neutral element is $\delta(n)$

Circular (cyclic) convolution

$$c(n) = a(n) \circledast b(n) = \sum_{k=0}^{N-1} a(k)b(n-k)$$

- Defined for periodic signals of periods equal to N
- The result is also a periodic signal whose period is N

Properties of sinusoidal signals

• To begin with, let us analyze a *continuous-time* sinusoidal signal

$$s(t) = \cos \Omega_0 t + j \sin \Omega_0 t$$
$$s(t) = e^{j\Omega_0 t}$$

Where do we encounter the signal $s(t) = e^{j\Omega_0 t}$ in continuous-time signal processing?

Properties of sinusoidal signals

• Now let us analyze the same signal in *discrete time*

Cycles per second: $f_0 = 1$ Hz Observations per second: $f_s = 8$ Hz Time between observations: $T = 1/f_s$

$$s(nT) = e^{jn\Omega_0 T} = e^{j\omega_0 n} = s_d(n)$$

Number of cycles between two
 observations defines the *frequency* of the discrete signal

 $\xi = fT = f/f_s$ [cycles per observation]

Phase angle between two observations defines the *angular frequency of the discrete signal*

 $\omega = \Omega T = \Omega / f_s$ [radians per observation]

Properties of sinusoidal signals

• This is, in fact, the *sampling* of a sinusoidal signal

Cycles per second: $f_0 = 1$ Hz Observations per second: $f_s = 8$ Hz Time between observations: $T = 1/f_s$

$$x(t) = \cos \Omega_0 t$$
$$x_d(n) = x(nT) = \cos \Omega_0 nT = \cos \omega_0 n$$

$$\Omega_{0} = 2\pi f_{0} = 2\pi \, \text{rad/s}$$

 $\omega_{0} = \Omega_{0}T = \frac{\Omega_{0}}{f_{s}} = \frac{\pi}{4}$
 $\xi_{0} = \frac{f_{0}}{f_{s}} = \frac{1}{8}$

The notion of frequency

• The notion of frequency is different with continuous-time (analogue) signals and discrete-time signals

Greater values of ω_0 do not necessarily imply that the discrete-time signal will change more quickly!

As ω_0 increases from 0 to π , so does the rate of change of the discrete-time signal

At the frequency equal to π the rate of change of the signal reaches its maximum

With ω_0 increasing further, the rate of change of the discrete-time signal *decreases*

At the frequency 2π the discrete-time signal is constant, just as it is constant at the frequency 0

With ω_0 increasing further, the cycle repeats itself with the period equal to 2π

• Signals $\cos(n\pi/4)$ and $\cos(9n\pi/4)$ are identical:

$$\omega_0 = \pi/4 \quad \frac{1}{0} \quad \frac{1}{16} \quad n \quad \omega_0 = 9\pi/4 \quad \frac{1}{0} \quad \frac{1}{16} \quad n \quad \omega_0 = 9\pi/4 \quad \frac{1}{0} \quad \frac{1}{16} \quad n \quad \omega_0 = 9\pi/4 \quad \frac{1}{16} \quad \frac{1}$$

• The same goes for any two sinusoidal discrete-time signals whose frequencies differ by an integer multiple of 2π

$$e^{j(\omega_0+2k\pi)n} = e^{j\omega_0n}e^{j2k\pi n} = e^{j\omega_0n}$$
, $k \in Z$

- In the continuous-time case, two complex sinusoids of different frequencies are always different themselves
 - This is because in the continuous-time case the fundamental period could be just any non-zero *real* number

Sampling

4

- Process of conversion of a continuous-time signal into a discrete-time signal
- Full digitalization of a signal also requires *quantization*, whereby the *values* of samples also become discrete

$$x(t) \longrightarrow \hat{x}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$\sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$\delta(t) = \begin{cases} \infty, \quad t = 0 \\ 0, \quad t \neq 0 \end{cases}$$

$$\delta(t) = \frac{1}{2} \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

Sampling

• Sampling theorem

$$f_s > 2f_{\max} \Leftrightarrow T_s < \frac{T_{\min}}{2}$$

Hardware limitation

 $f_s \leq f_{proc} \Leftrightarrow T_s \geq T_{proc}$

APPLICATION	$f_{\sf max}$	f_s
geophysics	500 Hz	1 kHz
biomedicine	1 kHz	2 kHz
mechanics	2 kHz	4 kHz
speech (telephony)	4 kHz	8 kHz
audio	20 kHz	40 kHz
video	4 MHz	8 MHz

 In order for digital signal processing with ideal reconstruction of the original continuous-time signal to be possible, the following must hold:

$$2f_{\max} < f_{proc} \Leftrightarrow \frac{T_{\min}}{2} > T_{proc}$$

$$\hat{x}(t) \xrightarrow{\sum_{n=-\infty}^{\infty} \delta(t-nT)} \hat{x}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t-nT)$$

$$= \sum_{n=-\infty}^{\infty} x(nT) \delta(t-nT)$$

$$\hat{x}(f) = F\{\hat{x}(t)\} = \int_{-\infty}^{\infty} \hat{x}(t) e^{-j2\pi ft} dt$$

$$\hat{x}(f) = \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(nT) \delta(t-nT) e^{-j2\pi ft} dt$$

$$\hat{x}(f) = \sum_{n=-\infty}^{\infty} x(nT) \int_{-\infty}^{\infty} \delta(t-nT) e^{-j2\pi ft} dt$$

$$\hat{x}(f) = \sum_{n=-\infty}^{\infty} x(nT) e^{-j2\pi fnT} \int_{-\infty}^{\infty} \delta(t-nT) dt$$

$$\hat{x}(f) = \sum_{n=-\infty}^{\infty} x(nT) e^{-j2\pi fnT}$$
FOURIER TRANSFORM OF THE

DISCRETE-TIME SIGNAL $x_d(n) = x(nT)$

The condition for existence is $|\hat{X}(f)| < \infty$ for each f • Since the following holds: 1

$$\left|\hat{X}(f)\right| = \left|\sum_{n=-\infty}^{\infty} x(nT)e^{-j2\pi fnT}\right| \leq \sum_{n=-\infty}^{\infty} \left|x(nT)\right| \left|e^{-j2\pi fnT}\right| = \sum_{n=-\infty}^{\infty} \left|x(nT)\right|,$$

a sufficient condition for convergence is

- $\sum |x(nT)| < \infty$ $n = -\infty$
- Spectrum of a sampled signal is *periodic*, with period f_{s} •

$$\hat{X}(f+kf_s) = \sum_{n=-\infty}^{\infty} x(nT)e^{-j2\pi(f+kf_s)Tn}$$
$$= \sum_{n=-\infty}^{\infty} x(nT)e^{-j2\pi fTn}e^{-j2\pi kf_sTn} = \hat{X}(f)$$

 Spectrum of the sampled signal is related to the spectrum of the original continuous-time signal X(f)

$$\begin{aligned}
x(t) & \longrightarrow \\
\hat{x}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t-nT) & \hat{X}(f) = \int_{-\infty}^{\infty} \hat{X}(t) e^{-j2\pi ft} dt \\
\sum_{n=-\infty}^{\infty} \delta(t-nT) = \frac{1}{T} \sum_{m=-\infty}^{\infty} e^{j2\pi m f_{5}t} & \hat{X}(f) = \int_{-\infty}^{\infty} x(t) \sum_{n=-\infty}^{\infty} \delta(t-nT) e^{-j2\pi ft} dt \\
\hat{X}(f) = \frac{1}{T} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} x(t) e^{j2\pi m f_{5}t} e^{-j2\pi ft} dt \\
\hat{X}(f) = \frac{1}{T} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} x(t) e^{-j2\pi (f-m f_{5})t} dt \\
\hat{X}(f) = \frac{1}{T} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} x(f-m f_{5}) dt
\end{aligned}$$

Nyquist interval

• The fundamental period of the spectrum of a discrete-time signal is called the *Nyquist interval*

Discrete-time system

Transform T{} which maps the input signal x(n)
 (*excitation*) into an output signal y(n) (*response*):

$$\mathsf{T}\{x(n)\} = y(n) \qquad \xrightarrow{x(n)} \qquad \mathsf{T}\{\} \qquad \xrightarrow{y(n)}$$

- From a mathematical standpoint, a discrete-time system is a mapping from the set of discrete-time signals D_R into itself, defined by the operator T{}
 - The general relationship between x(n) and y(n) is called the input-output relationship

Properties of discrete-time systems

Additivity

$$\forall x_1(n), x_2(n) \in D_R$$

T{ $x_1(n) + x_2(n)$ } = T{ $x_1(n)$ } + T{ $x_2(n)$ }

Homogeneity

$$\forall x_1(n) \in D_R, \forall a \in \mathbf{R},$$
$$\mathsf{T}\{ax_1(n)\} = a\mathsf{T}\{x_1(n)\}$$

Properties of discrete-time systems

Linearity

$$\forall x_1(n), x_2(n) \in D_R, \forall a, b \in \mathbf{R},$$
$$T\{ax_1(n) + bx_2(n)\} = aT\{x_1(n)\} + bT\{x_2(n)\}$$

• A system is linear if and only if it is both additive and homogeneous

Time invariance

$$\forall x(n) \in D_{R}, \forall k \in \mathbb{Z},$$
$$T\{x(n)\} = y(n) \Rightarrow T\{x(n-k)\} = y(n-k)$$

Properties of discrete-time systems

Causality

$$\forall x_1(n), x_2(n) \in \mathsf{D}_{\mathsf{R}}, \forall n_0 \in \mathsf{Z},$$
$$x_1(n) = x_2(n), n \leq n_0 \implies y_1(n) = y_2(n), n \leq n_0$$

- The system is causal if its response at no time instant *n* depends on the values of excitation in any future time instant (*n*+1, *n*+2,...)
- All discrete-time systems which perform real-time signal processing have to fulfil this condition

Linear time-invariant systems

• LTI systems have particularly interesting properties

$$V(n) = T\{x(n)\}$$

$$= T\{\sum_{k=-\infty}^{\infty} x(k)\delta(n-k)\}$$

$$= \sum_{k=-\infty}^{\infty} T\{x(k)\delta(n-k)\}$$

$$= \sum_{k=-\infty}^{\infty} x(k)T\{\delta(n-k)\}$$

$$= \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
TIME INVARIANCE
$$= \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$V(n) = x(n) * h(n)$$

Impulse response

- The response to the δ -impulse, which also uniquely identifies an LTI system
- Properties of the impulse response are related to system properties
 - The impulse response is causal if and only if the system is causal
- LTI systems whose input-output relationship is a linear difference equation with constant coefficients are of particular interest in practice:

$$\sum_{i=0}^{N} a_{i} y(n-i) = \sum_{i=0}^{M} b_{i} x(n-i) \qquad a_{N} \neq 0, a_{0} = 1$$

 Input-output relationship in this form also allows us to represent an LTI system graphically

Graphical representation of LTI systems

 An LTI system whose IOR is a linear difference equation with constant coefficients can be graphically represented using adders, multipliers and time delay units

Structures for realization of LTI systems

DIRECT FORM STRUCTURE OF AN LTI SYSTEM (DIRECT FORM I)

Structures for realization of LTI systems

Structures for realization of LTI systems

DIRECT FORM STRUCTURE OF AN LTI SYSTEM (DIRECT FORM II, CANONICAL)

FIR systems (Finite Impulse Response)

• IOR has all coefficients a_i equal to 0 (except $a_0 = 1$)

$$y(n) = -\sum_{i=1}^{N} a_{i}y(n-i) + \sum_{i=0}^{M} b_{i}x(n-i)$$
$$y(n) = \sum_{i=0}^{M} b_{i}x(n-i) \implies h(n) = \sum_{i=0}^{M} b_{i}\delta(n-i)$$

 Coefficients b_i are identical to the values of the samples of the FIR system's impulse response:

$$y(n) = h(0)x(n) + h(1)x(n-1) + ... + h(M)x(n-M)$$

 Generally, FIR systems are all LTI systems with impulse response of finite duration, it does not have to start exactly at n=0

Direct form structure of a FIR system

Find the IOR of the system with the impulse response:

$$h(n) = 2\delta(n) + 3\delta(n-1) + 3\delta(n-2) + 2\delta(n-3)$$

Find the impulse responses of the systems with the following IORs:

$$y(n) = x(n) + 2x(n-1) + 3x(n-2)$$

 $y(n) = x(n) - x(n-4)$

IIR systems (Infinite Impulse Response)

• IOR has at least one non-zero coefficient a_i (except a_0)

$$y(n) = -\sum_{i=1}^{N} a_i y(n-i) + \sum_{i=0}^{M} b_i x(n-i)$$
$$h(n) = -\sum_{i=1}^{N} a_i h(n-i) + \sum_{i=0}^{M} b_i \delta(n-i)$$

Impulse response cannot be directly obtained from IOR coefficients

1)
$$y(n) = y(n-1) + x(n)$$

 $h(n) = h(n-1) + \delta(n)$
 $(h(n) = u(n))$
2) $y(n) = \alpha y(n-1) + x(n)$
 $h(n) = \alpha h(n-1) + \delta(n)$
 $(h(n) = \alpha^n u(n))$

 Generally, IIR systems are all LTI systems with impulse response of infinite duration, it does not have to start exactly at n=0 Examine the following systems with respect to their linearity, time invariance and causality:

1

- 1) y(n) = 4x(n)
- 2) y(n) = x(n) + 3x(n-1)
- 3) y(n) = x(n) + 1
- 4) $y(n) = x(n^2)$
- 5) $y(n) = x^{2}(n)$
- 6) y(n) = x(2n)

7) y(n) = x(n-1)x(n+1)

$$9) \quad y(n) = |x(n)|$$

9)
$$y(n) = x(n)u(n)$$

0)
$$y(n) = \max\{x(n+1), x(n), x(n-1)\}$$

11)
$$y(n) = nx(n)$$