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* A measurable physical quantity used to transmit
messages, i.e. information

* From a mathematical standpoint, a signal is no
different than a function (a mapping)



* Independent variable:
= Time, space coordinate or something else
= One or more independent variables
= Continuous or discrete

x(t):R—>R x(n):Z—>R

A x(t) A x(n)
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* Dependent variable:
= Set of real or complex numbers
= Continuous or discrete




Why digital?

* Digital signals are not so easily damaged

= any impairment that is small enough can be
completely removed from the signal

* Digital data lends itself to new concepts:
= error detection and correction
= encryption
= compression
= time domain multiplex
= digital signal processing
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Why digital?

* Digital data lends itself to new concepts:

=" error detection and c

Checksum
Cyclic redundancy check (CRC)

Codes based on Hamming
distance

Hash functions
Turbo codes



Why digital?

* Symmetric encryption

= scrambling

* Asymmetric encryption

= secret and public key

& A
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* Digital data lends itse




Why digital?

* Compression

= |ossless (ZIP, RAR...)
* Digital data lends itse = lossy (JPG, MP3...)

= compression




Why digital?
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* Example: stereo WAV file

= time domain multiplex



Why digital?

* Flexibility
* Programmability
* Digital data lends itselft , Accuracy
e Stability
* Repeatability
* Small dimensions

= digital signal processing | * Price



Why digital?

* Flexibility

Inside noise-canceling headphones
Sound waves created Noise created

by headphone speaker by external source ° P rog ra m m a b i | ity
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* Accuracy
e Stability
. / * Repeatability

e Small dimensions
= Silence

= di * Price
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Some applications of digital signal processing

 Telephony and communication systems

Speech compression

Channel coding

Speech and data processing

Echo cancellation

Noise reduction

Encryption

Generation and detection of DTMF signals
Power consumption management

* Personal computers

Sound and image processing
Multimedia

Modem communications
Internet telephony and video

e Carindustry

Engine control and monitoring
Parking assistance
Autonomous navigation
Active safety

* Security systems

User authentication
Video surveillance

Speech technology
= Text-to-speech synthesis
= Automatic speech recognition
= Automatic speaker recognition
= Interactive human-machine dialogue

Medical electronics
= |ntensive care monitoring
= EKG and EEG analysis
= Medical image processing
Digital audio
= CDandDVD
= Sound compression
= Sound reproduction standards
= Digital audio-effects
= Noise reduction in audio
= Electronic music
Digital television
= Sound and image processing
= Video on demand
= TVsignal encryption



Properties of discrete-time signals

Periodicity
adN &N, x(n) = x(n + N)

A x(n)

The smallest such N is the fundamental period of the signal.
If there is no such N, the signal is aperiodic.



Properties of discrete-time signals

Sinusoid signal

A, w, =R, x(n) = Asin(wn + @)

| W—LLLWT 1% ~n X, (n)=si n’%ﬂ

T 2 x (n)=cosnm




Properties of discrete-time signals

Bounded signal

IM ER, |x(n)| <M
A x(n)
”HTHIT‘T‘H “TTIT,,,
[T o




Properties of discrete-time signals

Even signal Odd signal
Yn, x(—n) = x(n) n, x(—n) = —x(n)

Each discrete-time signal x(n) can be uniquely
represented as a sum of one even and one odd signal



Properties of discrete-time signals

Causality

Yn<0,x(n)=0 " [ H

Wide-sende causality

A x(n)

N, €Z, Vn<N,, x(n)=0 [ H




Properties of discrete-time signals

Anticausality

A x(n)

Yn>0,x(n)=0 M ” |

Wide-sense anticausality

A x(n)

N, €Z, Vn>N,, x(n)=0 %[ I




Duration of discrete-time signals

Finite
N ,N, €2

n<N,V n>N_x(n)=0 _”HWHJN_LV_F’JV—'

If x(N,)#0 i x(N,)#0, the duration of the signal is N,-N,+1.

Infinite
ZNl’NZEZ *
n<N \Vn>N,x(nj=0 FTIV [ 78 1




Representation of discrete-time signals

Discrete-time 6-impulse

(

6(n)

1, n=0 1
O, n#0 n

.

6(n) =+

Each discrete-time signal can be written as a linear
combination of 6-impulses shifted in time

A 26(n-3) A 26(n-3)+6(n-5)
2+——-¢ 2+——-¢
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Representation of discrete-time signals

Heaviside’s impulse train

(1, n=0 1I )

i

n

u(n) =+

0, n<0 ]

Some signals can be efficiently represented in terms of

Heaviside’s impulse train:

A 2u(2-n)
9 909 o ¢
A u(n-2)
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Representation of discrete-time signals

Plot the following signals against time:

x,(n)=u(n)—2u(n—3)
x,(n)=(n+3)u(n)

X, (n)=sin(nmt / 2)u(—n)

x,(n) =Y 6(n—3k)

x.(n)=2"u(3—-n)



Representation of discrete-time signals

Analytically describe the following signals:

4 xq1(n)




Convolution

Linear convolution ~
l(n)=a(n)*b(n)= > a(k)b(n—k)

k=— 00

= Does not always exist

= Sufficient condition for its existence is that either a(n) or b(n)
should have finite duration

= |f they are both of finite durations (N, and N, respectively), the
duration of the signal /(n) is N;+N,-1

= Commutative operation, the neutral element is 6(n)
Circular (cyclic) convolution

c(n)=a(n)®b(n) = ga(k)b(n —k)

= Defined for periodic signals of periods equal to N
= The result is also a periodic signal whose period is N



Properties of sinusoidal signals

* To begin with, let us analyze a continuous-time
sinusoidal signal

A Im

s(t)=cosQt+ jsinQt

s(t)=e"™

sinQpt
ot Fundamental frequency:

cosQot | Re line: fo[Hz]

angular: Q,[rad/s] }QO - ZITfO

\

Where do we encounter the signal

s(t)=e"" in continuous-time signal
processing?



Properties of sinusoidal signals

* Now let us analyze the same signal in discrete time

n=3

Im
n=2

n=1

n=4

n=5

n=6

n=0

n=7

Re

Cycles per second: f, =1 Hz
Observations per second: f, = 8 Hz
Time between observations: T = 1/f,

o
s(nT)=e"" =e™" =s_(n)

Number of cycles between two
observations defines the frequency
of the discrete signal

§=fT=f/fs [cycles per observation]

Phase angle between two observations
defines the angular frequency of the
discrete signal

w=0T= Q/fs [radians per observation]



Properties of sinusoidal signals

* This is, in fact, the sampling of a sinusoidal signal

Cycles per second: f, =1 Hz
p X Observations per second: f, = 8 Hz

' \ / Time between observations: T = 1/f,
1 >t [s]
\/ x(t)=cos Q. t

X,(n)=x(nT)=cos QnT =cosw,n

A Xa(n)
1 ¢
X [ { Q =2nf =2mrad/s
T 2 3 45 67 8 Q It f 1
Lol w, =0 == ==
A f, 8



The notion of frequency

 The notion of frequency is different with continuous-time
(analogue) signals and discrete-time signals

FREQUENCY
LINE ANGULAR
CONTINUOUS-TIME 1 o
SIGNALS f=—[Hz] Q=—=2nf [rad/s]
(period T) T T
DISCRETE-TIME f 0
SIGNALS s=fT.==[ ] w =0T, =-"=2né [rad]
(period N) fs fs




Examples of sampling

iy O f,=1Hz Q =2mrad/s
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Examples of sampling

f,=1Hz Q =2mrad/s




Examples of sampling

\n=3 -fO:1HZ QOZZHrad/S

31T

n=1
3
n=4 n=0,8 E _ — w = —
0 0
k g 4
n=7 n=5
n=2

2 X(1)




Examples of sampling

nmf\ f,= 1Hz Q, =2mrrad/s

A X(t)

DN /N N N
NSNS NS TN




Examples of sampling

f,=1Hz Q =2mrad/s
5 Srt




Examples of sampling

f,=1Hz Q =2mrad/s
3 3




Examples of sampling

0~ f,=1Hz Q =2mrad/s
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Examples of sampling
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Examples of sampling

f,=1Hz Q =2mrad/s
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Frequency of discrete signals

wo=rmn/4 -

CEA AR A AL L ]

T (n)
1
wo = 511/4 0 1 = l ; 1 l l ,.-": l = 1 26~ " Greater values of w, do not necessarily

B R R imply that the discrete-time signal will
change more quickly!



Frequency of discrete signals

wo=m/4 -

1 .j("(”) 1TX‘1(” )2‘;"-. EOA A | ;'12'; P .-"fj;
R

I (n)
1
wo = 571/4 0 l f l 1 J; l _,.-": l i a6 " As w, increases from 0 to 1T, so

B R EE does the rate of change of the
discrete-time signal



Frequency of discrete signals

wo=rmn/4 -

1 .j("(”) 1TX‘1(” )2‘;"-. EOA A | ;'12'; P .-"fj;
R

(n)
1} T LU TAEE T ARFE N SRS S
wo=51/4 ] = l — [ l l = l — 1 ne " At the frequency equal to 1t the rate

B AR A S A of change of the signal reaches its
maximum



Frequency of discrete signals

wo=rmn/4 -

1 .j("(”) 1TX‘1(” )2‘;"-. EOA A | ;'12'; P .-"fj;
R

(n)
1[:, SN U SR AT SO B
wo=5mfa - 1—-’; = ] — E‘:[ l f — 1 — 2"-1 wr With wpincreasing further, the rate

B R EE of change of the discrete-time signal
decreases



Frequency of discrete signals

o M Tl ]

1 .j("(”) 1TX‘1(” )2‘;"-. EOA A | ;'12'; P .-"fj;
R

(n)
1[3 A LN AL O A O AL A A
wo=51/4 l — l — 1 l l — l — i fj; n At the frequency 27t the discrete-time

B T signal is constant, just as it is constant
at the frequency 0



Frequency of discrete signals

wo=rmn/4 -

1 .j("(”) 1TX‘1(” )2‘;"-. EOA A | ;'12'; P .-"fj;
R

(n)
1[:, SN U SR AT SO B
o = 5/ 0 1 ;; l 5_.: 1 l l :;' l :_.-" 1 T With w, increasing further, the cycle

EEE LN AR RN repeats itself with the period equal
to 2r



Frequency of discrete signals

 Signals cos(nrt/4) and cos(9nrt/4) are identical:

 The same goes for any two sinusoidal discrete-time signals

whose frequencies differ by anlinteger multiple of 2t

ej(w0+2kn)n _ ejwonyjz’g;n _ ejwon’ k =7

* In the continuous-time case, two complex sinusoids of
different frequencies are always different themselves

= This is because in the continuous-time case the fundamental
period could be just any non-zero real number



Sampling

* Process of conversion of a continuous-time signal into a
discrete-time signal

* Full digitalization of a signal also requires quantization, whereby
the values of samples also become discrete

A x(t)

x(t) 4%— X(t) = x(t) ié(t —nT) \/

Z5(t—nT) -t [s]

n=-—aoo

A )A((t)

t) =
0, t+#0 T T \T\—f I { -t [s]




Sampling

 Sampling theorem

T APPLICATION Jfmax fs
f.>2f ST <= geophysics 500 Hz | 1 kHz
S max S
2 biomedicine 1 kHz 2 kHz
C o er mechanics 2 kHz 4 kHz
e Hardware limi
ardware tation speech (telephony)| 4 kHz 8 kHz
audio 20 kHz | 40 kHz
fs < fproc <:>Ts 2 7-proc video 4 MHz 8 MHz

* In order for digital signal processing with ideal reconstruction of
the original continuous-time signal to be possible, the following
must hold:

T
zfmax < proc<:> - > T

2 proc



Spectrum of a sampled signal

x(t) x(t) = x(t) ié(t —nT) A 0 |
X(f) =Hx(0)} = [x(0)e " dt

ié(t—nT) = ix(nT)(S(t—nT)

R(f)= [ S x(nT)8(t —nT)e "dt

_wn:—w

\/ X(f) = ix(nT)TcS(t—nT)ejz”ﬁdt

1

" X(f) = ix(nT)e”"f”T/jﬂ(/t:—nT)dt
A %(t) 5 n:O;oo —
] T::-i{:fs ) /{ )%(f) _ ZX(nT)e—jannT
[ Itr] {

> t[s]

FOURIER TRANSFORM OF THE
DISCRETE-TIME SIGNAL x,(n) = x(nT)



Spectrum of a sampled signal

* The condition for existence is |X(f) < for each f
Since the following holds: .

X(f)|= S x(nT)e 7| < ix(nT)VZ”/f;T = 3 x(nT),

a sufficient condition for convergence is | D_x(nT)| <o

Nn=—00

* Spectrum of a sampled signal is periodic, with period f,

R(f+Kf,)= Y x(nT)e 2"

n=—oo

1

_ ix(nr)eﬂ"ﬁ"y/ﬂkfsm = X(f)

n=—o0



Spectrum of a sampled signal

e Spectrum of the sampled signal is related to the
spectrum of the original continuous-time signal X(f)

() 4%— s =xt) Y 8t-nT)  X(f)= j x(t)e M dt

1< janmfit R e ® )
2oe-nm=g 2t X(f)= [ x(0) 3600 -nT)e " at

—00

)%(f) Z jx(t)eJZHmft jZHftdt

m=—w _q

X(f) = Z j x(t)e U mE N gt

m——oo o

X(f)= ZX(f mf)

m_—OO



Spectrum of a sampled signal

_fmax f
fs > 2fm A TX(f) mag
X(F+21,) X(F+£.) XL xR N\ )
L1\ f
Zf f ]i _fmax fmax JE f 2f
2 2
fs < 2fmax 4 X()




Nyquist interval

 The fundamental period of the spectrum of a
discrete-time signal is called the Nyquist interval

~ A A

>t [s] > f > 0
00 s - } TR() } TX(Q)
o i e el
[Teef L, AT LA
R b A 0, & o o
2 f 2 20 2
’ d(n) | J Txd(fl) | A TXd(alJ)
ol e \ - AR A
(|)12345678 1 ?; 1 ?1 1 -2 ?1 . ;:z 21



Discrete-time system

* Transform T{} which maps the input signal x(n)
(excitation) into an output signal y(n) (response):

x(n) y('l)

Tix(n)}=y(n) - T

* From a mathematical standpoint, a discrete-time
system is a mapping from the set of discrete-time
signals Dy, into itself, defined by the operator T{}

* The general relationship between x(n) and y(n) is called
the input-output relationship



Properties of discrete-time systems

Additivity

Vv x,(n),x,(n) €D,

Tix, (n)+x,(n)} =T{x,(n)}+ Tix,(n)}
Homogeneity

Vx (n)ED,, Va&<R,
T{ax,(n)} =aT{x,(n)}



Properties of discrete-time systems

Linearity
VvV x,(n),x,(n)ED,, Va,b<ER,
T{ax,(n)+ bx,(n)} =aT{x, (n)}+bT{x,(n)}

 Asystem s linear if and only if it is both additive and
homogeneous

Time invariance

Vx(n)ED,,VkELZ,
T{x(n)} =y(n)= T{x(n—k)}=y(n—k)



Properties of discrete-time systems

Causality
V x,(n),x,(n)ED,, Vn, €L,

x,(n)=x,(n),n<n,= y.(n)=y,(n),n<n,

 The system is causal if its response at no time instant
n depends on the values of excitation in any future
time instant (n+1, n+2,...)

* All discrete-time systems which perform real-time
signal processing have to fulfil this condition



Linear time-invariant systems

* LTI systems have particularly interesting properties

x(n)

6(n)

LVN

y(n)=T{x(n)}

- T{ S x(k)5(n - k)}

k=—00

y(n) ADDITIVITY

h(n) = iT{X(k)CS(n —k)}

k=—00 HOMOGENEITY
= > x(k)T{6(n— /5)}

k=—o0
=3 x(k)h(n — k)

k=—o0

y(n) = x(n)*h(n)



Impulse response

 The response to the 6-impulse, which also uniquely
identifies an LTI system

* Properties of the impulse response are related to system
properties
= The impulse response is causal if and only if the system is causal

e LTI systems whose input-output relationship is a linear
difference equation with constant coefficients are of
particular interest in practice:

N M
ZG,y(n—i):Zb,.x(n—i) a,#0,a0,=1
i=0 i=0

* Input-output relationship in this form also allows us to
represent an LTI system graphically



Graphical representation of LTI systems

* An LTI system whose IOR is a linear difference equation

with constant coefficients can be graphically
represented using adders, multipliers and time delay

units
a(n)
Yy )
b(n)

c(n)=a(n)+b(n)

a(n) [: b(n)

b(n)=Ka(n)




Structures for realization of LTI systems

y(n) =

x(n

Za y(n—r)+2bx(n—:)

P
a;
€A
DIRECT FORM
a2 STRUCTURE OF
6 AN LTI SYSTEM
f (DIRECT FORM 1)




Structures for realization of LTI systems

oD
N




Structures for realization of LTI systems

N M

y(n) = —ZGI-V(H —i)+ Zb x(n—i)
i=1 i=0
X(I’I) .;m bo .;/T\ y(,l)
Y ' P
a ‘ b1
6‘\}4 }4 A A9
7! DIRECT FORM
a, b, STRUCTURE OF
@‘ }‘ ’D—’@ AN LTI SYSTEM
; * (DIRECT FORM I,
(M N}-1 Brant CANONICAL)




FIR systems (Finite Impulse Response)

* IOR has all coefficients a; equal to 0 (except a, = 1)
0

Y =-Yayin-i)+ Y bxin—

y(n) = ibix(n —i) = h(n)= ib,é(n — i)

* Coefficients b, are identical to the values of the samples of
the FIR system’s impulse response:

y(n)=h(0)x(n) + h(1)x(n —1)+...+ h(M)x(n—M)

* Generally, FIR systems are all LTI systems with impulse
response of finite duration, it does not have to start
exactly at n=0



Direct form structure of a FIR system

71
b,
,HD—{?
71
b,
D
¥
by- :




FIR systems (Finite Impulse Response)

Find the IOR of the system with the impulse
response:

h(n)=26(n)+36(n—1)+36(n—2)+26(n—3)

Find the impulse responses of the systems with
the following IORs:

y(n) = x(n)+2x(n—1)+ 3x(n—2)
y(n) = x(n) —x(n—4)



lIR systems (Infinite Impulse Response)

* IOR has at least one non-zero coefficient a; (except a,)

y(n) = —Za,y(n — i)+ Zb,x(n —)

h(n) = —ia,h(n —i)+ ib,ﬁ(n —1)

* Impulse response cannot be directly obtained from IOR
coefficients

1) y(n)=y(n—-1)+ x(n) 2) y(n)=ay(n—1)+ x(n)
h(n)=h(n—1)+ 6(n) h(n) =ah(n—1)+ 6(n)
(h(n)=u(n)) (h(n)=a"u(n))

* Generally, IR systems are all LTI systems with impulse response
of infinite duration, it does not have to start exactly at n=0



Examples of discrete systems

Examine the following systems with respect to their
linearity, time invariance and causality:

1) y(n)=4x(n) 7) y(n)=x(n—1)x(n+1)

2) y(n)=x(n)+3x(n—-1) 8) y(n)= | x(n)|

3) yln)=x(n)+1 9) y(n)=x(n)u(n)

4) y(n)=x(n") 10) y(n)=max{x(n +1),x(n),x(n—1)}
5) y(n)=x*(n) 11) y(n) = nx(n)

6) y(n)=x(2n)



