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Signal

• A measurable physical quantity used to transmit
messages, i.e. information

• From a mathematical standpoint, a signal is no 
different than a function (a mapping)



Signal

• Independent variable:
 Time, space coordinate or something else 
 One or more independent variables
 Continuous or discrete

• Dependent variable:
 Set of real or complex numbers
 Continuous or discrete

x(t): R  R x(n): Z  R
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Why digital?

• Digital signals are not so easily damaged

 any impairment that is small enough can be 
completely removed from the signal

• Digital data lends itself to new concepts:

 error detection and correction

 encryption

 compression

 time domain multiplex

 digital signal processing
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Some applications of digital signal processing

• Telephony and communication systems
 Speech compression
 Channel coding
 Speech and data processing
 Echo cancellation
 Noise reduction
 Encryption
 Generation and detection of DTMF signals
 Power consumption management 

• Personal computers
 Sound and image processing
 Multimedia
 Modem communications
 Internet telephony and video

• Car industry
 Engine control and monitoring
 Parking assistance
 Autonomous navigation
 Active safety

• Security systems
 User authentication
 Video surveillance

• Speech technology
 Text-to-speech synthesis
 Automatic speech recognition
 Automatic speaker recognition
 Interactive human-machine dialogue

• Medical electronics
 Intensive care monitoring
 EKG and EEG analysis
 Medical image processing

• Digital audio
 CD and DVD
 Sound compression
 Sound reproduction standards
 Digital audio-effects
 Noise reduction in audio
 Electronic music

• Digital television
 Sound and image processing
 Video on demand
 TV signal encryption



Properties of discrete-time signals

Periodicity

The smallest such N is the fundamental period of the signal.

If there is no such N, the signal is aperiodic.
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Properties of discrete-time signals

Sinusoid signal
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Properties of discrete-time signals

Bounded signal
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Properties of discrete-time signals

Even signal Odd signal

Each discrete-time signal x(n) can be uniquely 
represented as a sum of one even and one odd signal
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Properties of discrete-time signals

Causality

Wide-sende causality
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Properties of discrete-time signals

Anticausality

Wide-sense anticausality
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Duration of discrete-time signals

Finite

If x(N1)≠0 i x(N2)≠0, the duration of the signal is N2-N1+1.

Infinite
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Representation of discrete-time signals

Discrete-time δ-impulse

Each discrete-time signal can be written as a linear 
combination of δ-impulses shifted in time
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Heaviside’s impulse train

Some signals can be efficiently represented in terms of 
Heaviside’s impulse train:

Representation of discrete-time signals
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Representation of discrete-time signals

Plot the following signals against time:
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Representation of discrete-time signals

Analytically describe the following signals:
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Linear convolution

 Does not always exist

 Sufficient condition for its existence is that either a(n) or b(n) 
should have finite duration

 If they are both of finite durations (N1 and N2 respectively), the 
duration of the signal l(n) is N1+N2−1

 Commutative operation, the neutral element is δ(n)

Circular (cyclic) convolution

 Defined for periodic signals of periods equal to N

 The result is also a periodic signal whose period is N

Convolution





∞

∞k

knbkanbnanl )()()()()(







1

0

)()()()()(
N

k

knbkanbnanc



Properties of sinusoidal signals

• To begin with, let us analyze a continuous-time
sinusoidal signal
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Properties of sinusoidal signals

• Now let us analyze the same signal in discrete time
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Number of cycles between two 
observations defines the frequency
of the discrete signal

ξ = fT = f/fs [cycles per observation]

Phase angle between two observations 
defines the angular frequency of the 
discrete signal

ω = ΩT = Ω/fs [radians per observation]
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Observations per second: fs = 8 Hz

Time between observations: T = 1/fs



Properties of sinusoidal signals

• This is, in fact, the sampling of a sinusoidal signal

Cycles per second: f0 = 1 Hz

Observations per second: fs = 8 Hz

Time between observations: T = 1/fs
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The notion of frequency

• The notion of frequency is different with continuous-time 
(analogue) signals and discrete-time signals

DISKRETNI SIGNALI 
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Examples of sampling

48

1
rad/s2Hz1

00

00

π
ωξ

πΩf





n = 0, 8

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

t [s]

x(t)

n0

1

8

1

1

xd(n)

2 3

16 24

4

32



Examples of sampling
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Examples of sampling
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Examples of sampling

n = 0, 2
4, 6, 8

n = 1, 3
5, 7

t [s]

x(t)

n0

1

1

1

xd(n)

2 3 4

2 4 6 8

πωξ

πΩf





00

00

2

1
rad/s2Hz1



Examples of sampling
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Examples of sampling
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Examples of sampling
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Examples of sampling
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Examples of sampling

n = 0, 8

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

t [s]

x(t)

n0

1

1

1

xd(n)

2 3 4

1 2 33

4

9

8

9
rad/s2Hz1

00

00

π
ωξ

πΩf







Frequency of discrete signals

Greater values of ω0 do not necessarily 
imply that the discrete-time signal will 
change more quickly!
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Frequency of discrete signals

As ω0 increases from 0 to π, so 
does the rate of change of the 
discrete-time signal
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Frequency of discrete signals

At the frequency equal to π the rate 
of change of the signal reaches its 
maximum
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Frequency of discrete signals

With ω0 increasing further, the rate 
of change of the discrete-time signal 
decreases
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Frequency of discrete signals

At the frequency 2π the discrete-time 
signal is constant, just as it is constant 
at the frequency 0
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Frequency of discrete signals

With ω0 increasing further, the cycle 
repeats itself with the period equal 
to 2π
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• Signals cos(nπ/4) and cos(9nπ/4) are identical:

• The same goes for any two sinusoidal discrete-time signals 
whose frequencies differ by an integer multiple of 2π

• In the continuous-time case, two complex sinusoids of 
different frequencies are always different themselves
 This is because in the continuous-time case the fundamental 

period could be just any non-zero real number
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• Process of conversion of a continuous-time signal into a 
discrete-time signal

• Full digitalization of a signal also requires quantization, whereby 
the values of samples also become discrete

Sampling
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• Sampling theorem

• Hardware limitation

• In order for digital signal processing with ideal reconstruction of 
the original continuous-time signal to be possible, the following 
must hold: 

Sampling
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Spectrum of a sampled signal
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• The condition for existence is for each f

Since the following holds:

a sufficient condition for convergence is

• Spectrum of a sampled signal is periodic, with period fs
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• Spectrum of the sampled signal is related to the 
spectrum of the original continuous-time signal X(f ) 

Spectrum of a sampled signal
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Spectrum of a sampled signal
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• The fundamental period of the spectrum of a 
discrete-time signal is called the Nyquist interval

Nyquist interval
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• Transform T{} which maps the input signal x(n) 
(excitation) into an output signal y(n) (response):

• From a mathematical standpoint, a discrete-time 
system is a mapping from the set of discrete-time 
signals DR into itself, defined by the operator T{}

 The general relationship between x(n) and y(n) is called
the input-output relationship

Discrete-time system
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Additivity

Homogeneity

Properties of discrete-time systems
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Linearity

• A system is linear if and only if it is both additive and 
homogeneous

Time invariance

Properties of discrete-time systems
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Causality

• The system is causal if its response at no time instant
n depends on the values of excitation in any future 
time instant (n+1, n+2,...)

• All discrete-time systems which perform real-time 
signal processing have to fulfil this condition

Properties of discrete-time systems
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• LTI systems have particularly interesting properties

Linear time-invariant systems
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• The response to the δ-impulse, which also uniquely 
identifies an LTI system

• Properties of the impulse response are related to system 
properties
 The impulse response is causal if and only if the system is causal

• LTI systems whose input-output relationship is a linear 
difference equation with constant coefficients are of 
particular interest in practice:

• Input-output relationship in this form also allows us to 
represent an LTI system graphically

Impulse response
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• An LTI system whose IOR is a linear difference equation 
with constant coefficients can be graphically 
represented using adders, multipliers and time delay 
units

Graphical representation of LTI systems
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Structures for realization of LTI systems
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Structures for realization of LTI systems
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Structures for realization of LTI systems
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• IOR has all coefficients ai equal to 0 (except a0 = 1)

• Coefficients bi are identical to the values of the samples of 
the FIR system’s impulse response:

• Generally, FIR systems are all LTI systems with impulse 
response of finite duration, it does not have to start 
exactly at n=0

FIR systems (Finite Impulse Response)













M

i
i

M

i
i

M

i
i

N

i
i

inδbnhinxbny

inxbinyany

00

01

)()()()(

)()()(

)()(...)1()1()()0()( MnxMhnxhnxhny 

0



Direct form structure of a FIR system
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FIR systems (Finite Impulse Response)
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Find the IOR of the system with the impulse 
response:

Find the impulse responses of the systems with 
the following IORs:

)4()()(

)2(3)1(2)()(





nxnxny

nxnxnxny



• IOR has at least one non-zero coefficient ai (except a0)

• Impulse response cannot be directly obtained from IOR 
coefficients

• Generally, IIR systems are all LTI systems with impulse response 
of infinite duration, it does not have to start exactly at n=0

IIR systems (Infinite Impulse Response)
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Examples of discrete systems
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Examine the following systems with respect to their
linearity, time invariance and causality:


