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Signal

• A measurable physical quantity used to transmit
messages, i.e. information

• From a mathematical standpoint, a signal is no 
different than a function (a mapping)



Signal

• Independent variable:
 Time, space coordinate or something else 
 One or more independent variables
 Continuous or discrete

• Dependent variable:
 Set of real or complex numbers
 Continuous or discrete
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Why digital?

• Digital signals are not so easily damaged

 any impairment that is small enough can be 
completely removed from the signal

• Digital data lends itself to new concepts:

 error detection and correction

 encryption

 compression

 time domain multiplex

 digital signal processing
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Why digital?

• Digital signals are not so easily damaged

 any impairment that is small enough can be 
completely removed from the signal

• Digital data lends itself to new concepts:

 error detection and correction

 encryption

 compression

 time domain multiplex

 digital signal processing

• Checksum

• Cyclic redundancy check (CRC)

• Codes based on Hamming 
distance

• Hash functions

• Turbo codes

. . .



Why digital?

• Digital signals are not so easily damaged

 any impairment that is small enough can be 
completely removed from the signal

• Digital data lends itself to new concepts:

 error detection and correction

 encryption

 compression

 time domain multiplex

 digital signal processing

• Symmetric encryption
 scrambling

• Asymmetric encryption
 secret and public key



Why digital?

• Digital signals are not so easily damaged

 any impairment that is small enough can be 
completely removed from the signal

• Digital data lends itself to new concepts:

 error detection and correction

 encryption

 compression

 time domain multiplex

 digital signal processing

• Compression

 lossless (ZIP, RAR...)

 lossy (JPG, MP3...)



Why digital?

• Digital signals are not so easily damaged

 any impairment that is small enough can be 
completely removed from the signal

• Digital data lends itself to new concepts:

 error detection and correction

 encryption

 compression

 time domain multiplex

 digital signal processing

• Example: stereo WAV file
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• Flexibility

• Programmability

• Accuracy

• Stability

• Repeatability

• Small dimensions

• Price
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Some applications of digital signal processing

• Telephony and communication systems
 Speech compression
 Channel coding
 Speech and data processing
 Echo cancellation
 Noise reduction
 Encryption
 Generation and detection of DTMF signals
 Power consumption management 

• Personal computers
 Sound and image processing
 Multimedia
 Modem communications
 Internet telephony and video

• Car industry
 Engine control and monitoring
 Parking assistance
 Autonomous navigation
 Active safety

• Security systems
 User authentication
 Video surveillance

• Speech technology
 Text-to-speech synthesis
 Automatic speech recognition
 Automatic speaker recognition
 Interactive human-machine dialogue

• Medical electronics
 Intensive care monitoring
 EKG and EEG analysis
 Medical image processing

• Digital audio
 CD and DVD
 Sound compression
 Sound reproduction standards
 Digital audio-effects
 Noise reduction in audio
 Electronic music

• Digital television
 Sound and image processing
 Video on demand
 TV signal encryption



Properties of discrete-time signals

Periodicity

The smallest such N is the fundamental period of the signal.

If there is no such N, the signal is aperiodic.

n

x(n)

0 N 2NN_

. . .. . .

)()(, NnxnxN N∈∃



Properties of discrete-time signals

Sinusoid signal
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Properties of discrete-time signals

Bounded signal
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Properties of discrete-time signals

Even signal Odd signal

Each discrete-time signal x(n) can be uniquely 
represented as a sum of one even and one odd signal
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Properties of discrete-time signals

Causality

Wide-sende causality
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Properties of discrete-time signals

Anticausality

Wide-sense anticausality
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Duration of discrete-time signals

Finite

If x(N1)≠0 i x(N2)≠0, the duration of the signal is N2-N1+1.

Infinite
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Representation of discrete-time signals

Discrete-time δ-impulse

Each discrete-time signal can be written as a linear 
combination of δ-impulses shifted in time
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Heaviside’s impulse train

Some signals can be efficiently represented in terms of 
Heaviside’s impulse train:

Representation of discrete-time signals
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Representation of discrete-time signals

Plot the following signals against time:
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Representation of discrete-time signals

Analytically describe the following signals:
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Linear convolution

 Does not always exist

 Sufficient condition for its existence is that either a(n) or b(n) 
should have finite duration

 If they are both of finite durations (N1 and N2 respectively), the 
duration of the signal l(n) is N1+N2−1

 Commutative operation, the neutral element is δ(n)

Circular (cyclic) convolution

 Defined for periodic signals of periods equal to N

 The result is also a periodic signal whose period is N

Convolution
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Properties of sinusoidal signals

• To begin with, let us analyze a continuous-time
sinusoidal signal

tjΩets

tΩjtΩts

0)(

sincos)(
00





Fundamental frequency:

line: f0 [Hz]

angular: Ω0 [rad/s] 00 2 fπΩ 




Where do we encounter the signal          

in continuous-time signal 
processing?
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Properties of sinusoidal signals

• Now let us analyze the same signal in discrete time
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Number of cycles between two 
observations defines the frequency
of the discrete signal

ξ = fT = f/fs [cycles per observation]

Phase angle between two observations 
defines the angular frequency of the 
discrete signal

ω = ΩT = Ω/fs [radians per observation]
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Cycles per second: f0 = 1 Hz

Observations per second: fs = 8 Hz

Time between observations: T = 1/fs



Properties of sinusoidal signals

• This is, in fact, the sampling of a sinusoidal signal

Cycles per second: f0 = 1 Hz

Observations per second: fs = 8 Hz

Time between observations: T = 1/fs
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The notion of frequency

• The notion of frequency is different with continuous-time 
(analogue) signals and discrete-time signals
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Examples of sampling
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n = 0, 8

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6
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Examples of sampling

n = 0, 4, 8

n = 1, 5

n = 2, 6

n = 3, 7
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Examples of sampling
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Examples of sampling

n = 0, 2
4, 6, 8

n = 1, 3
5, 7
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Examples of sampling

n = 0, 8
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Examples of sampling

n = 0, 4, 8

n = 3, 7
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t [s]

x(t)

n0

1

1

1

xd(n)

2 3

4

4

2

3

4

3
rad/s2Hz1

00

00

π
ωξ

πΩf







Examples of sampling

n = 0, 8
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Examples of sampling

n = 0, 1
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Examples of sampling

n = 0, 8
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Frequency of discrete signals

Greater values of ω0 do not necessarily 
imply that the discrete-time signal will 
change more quickly!
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Frequency of discrete signals

As ω0 increases from 0 to π, so 
does the rate of change of the 
discrete-time signal
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Frequency of discrete signals

At the frequency equal to π the rate 
of change of the signal reaches its 
maximum
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Frequency of discrete signals

With ω0 increasing further, the rate 
of change of the discrete-time signal 
decreases
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Frequency of discrete signals

At the frequency 2π the discrete-time 
signal is constant, just as it is constant 
at the frequency 0
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Frequency of discrete signals

With ω0 increasing further, the cycle 
repeats itself with the period equal 
to 2π
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• Signals cos(nπ/4) and cos(9nπ/4) are identical:

• The same goes for any two sinusoidal discrete-time signals 
whose frequencies differ by an integer multiple of 2π

• In the continuous-time case, two complex sinusoids of 
different frequencies are always different themselves
 This is because in the continuous-time case the fundamental 

period could be just any non-zero real number
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• Process of conversion of a continuous-time signal into a 
discrete-time signal

• Full digitalization of a signal also requires quantization, whereby 
the values of samples also become discrete

Sampling







n

nTtδtxtx )()()(ˆ










0,0

0,
)(

t

t
tδ

∞

)(tx







n

nTtδ )( t [s]

x(t)

T=1/fs

x(t)^

t [s]



• Sampling theorem

• Hardware limitation

• In order for digital signal processing with ideal reconstruction of 
the original continuous-time signal to be possible, the following 
must hold: 

Sampling
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Spectrum of a sampled signal
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• The condition for existence is for each f

Since the following holds:

a sufficient condition for convergence is

• Spectrum of a sampled signal is periodic, with period fs

Spectrum of a sampled signal
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• Spectrum of the sampled signal is related to the 
spectrum of the original continuous-time signal X(f ) 

Spectrum of a sampled signal
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Spectrum of a sampled signal
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• The fundamental period of the spectrum of a 
discrete-time signal is called the Nyquist interval

Nyquist interval
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• Transform T{} which maps the input signal x(n) 
(excitation) into an output signal y(n) (response):

• From a mathematical standpoint, a discrete-time 
system is a mapping from the set of discrete-time 
signals DR into itself, defined by the operator T{}

 The general relationship between x(n) and y(n) is called
the input-output relationship

Discrete-time system
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Additivity

Homogeneity

Properties of discrete-time systems
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Linearity

• A system is linear if and only if it is both additive and 
homogeneous

Time invariance

Properties of discrete-time systems
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Causality

• The system is causal if its response at no time instant
n depends on the values of excitation in any future 
time instant (n+1, n+2,...)

• All discrete-time systems which perform real-time 
signal processing have to fulfil this condition

Properties of discrete-time systems
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• LTI systems have particularly interesting properties

Linear time-invariant systems
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• The response to the δ-impulse, which also uniquely 
identifies an LTI system

• Properties of the impulse response are related to system 
properties
 The impulse response is causal if and only if the system is causal

• LTI systems whose input-output relationship is a linear 
difference equation with constant coefficients are of 
particular interest in practice:

• Input-output relationship in this form also allows us to 
represent an LTI system graphically

Impulse response
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• An LTI system whose IOR is a linear difference equation 
with constant coefficients can be graphically 
represented using adders, multipliers and time delay 
units

Graphical representation of LTI systems

a(n)

z−1

b(n)

c(n) a(n)

b(n)=Ka(n)

K

c(n)=a(n)+b(n)

b(n) a(n)

b(n)=a(n−1)

b(n)



Structures for realization of LTI systems
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aN−1

aN

. .
 .

z−1

z−1

z−1

. .
 .

y(n)

−

DIRECT FORM 
STRUCTURE OF
AN LTI SYSTEM
(DIRECT FORM I)



Structures for realization of LTI systems

a1

a2

aN−1
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. .
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z−1
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. . .

. . .



Structures for realization of LTI systems

a1

a2
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. .
 .

z−1

z−1

z−1

. .
 .

y(n)
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x(n) b0

b1

b2

. . .

bmax{M,N}−1
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DIRECT FORM 
STRUCTURE OF
AN LTI SYSTEM
(DIRECT FORM II, 
CANONICAL)



• IOR has all coefficients ai equal to 0 (except a0 = 1)

• Coefficients bi are identical to the values of the samples of 
the FIR system’s impulse response:

• Generally, FIR systems are all LTI systems with impulse 
response of finite duration, it does not have to start 
exactly at n=0

FIR systems (Finite Impulse Response)
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Direct form structure of a FIR system
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FIR systems (Finite Impulse Response)
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Find the IOR of the system with the impulse 
response:

Find the impulse responses of the systems with 
the following IORs:
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• IOR has at least one non-zero coefficient ai (except a0)

• Impulse response cannot be directly obtained from IOR 
coefficients

• Generally, IIR systems are all LTI systems with impulse response 
of infinite duration, it does not have to start exactly at n=0

IIR systems (Infinite Impulse Response)
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Examples of discrete systems
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Examine the following systems with respect to their
linearity, time invariance and causality:


