Wave propagation and viscoelastic materials modelling
- S. Jelić, D. Zorica, Wave propagation in three-dimensional fractional viscoelastic infinite solid body, Physica D: Nonlinear Phenomena, 464 (2024) 134185–1–30.
- S. Jelić, D. Zorica, Stress and power as a response to harmonic excitation of a fractional anti-Zener and Zener type viscoelastic body, Zeitschrift für Angewandte Mathematik und Mechanik, 104 (2024) e202300968–1–33.
- S. Jelić, D. Zorica, Energy balance for fractional anti-Zener and Zener models in terms of relaxation modulus and creep compliance, Applied Mathematical Modelling, 123 (2023) 688–728.
- S. Jelić, D. Zorica, Fractionalization of anti-Zener and Zener models via rheological analogy, Acta Mechanica, 234 (2023) 313–354.
- S. Jelić, D. Zorica, Fractional Burgers wave equation on a finite domain, Chaos, Solitons and Fractals, 154 (2022) 111632–1–26.
- D. Zorica, Lj. Oparnica, Energy dissipation for hereditary and energy conservation for non-local fractional wave equations, Philosophical Transactions of the Royal Society A, 378 (2020) 20190295–1–24.
- A. Okuka, D. Zorica, Fractional Burgers models in creep and stress relaxation tests, Applied Mathematical Modelling, 77 (2020) 1894–1935.
- D. Zorica, Hereditariness and non-locality in wave propagation modelling, Theoretical and Applied Mechanics, 47 (2020) 19–31.
- Lj. Oparnica, D. Zorica, A. Okuka, Fractional Burgers wave equation, Acta Mechanica, 230 (2019) 4321–4340.
- S. Konjik, Lj. Oparnica, D. Zorica, Distributed order fractional constitutive stress-strain relation in wave propagation modeling, Zeitschrift für Angewandte Mathematik und Physik, 70 (2019) 51–1–21.
- G. Hörmann, Lj. Oparnica, D. Zorica, Solvability and microlocal analysis of the fractional Eringen wave equation, Mathematics and Mechanics of Solids, 23 (2018) 1420–1430.
- A. Okuka, D. Zorica, Formulation of thermodynamically consistent fractional Burgers models, Acta Mechanica, 229 (2018) 3557–3570.
- Y. Bouras, D. Zorica, T. M. Atanacković, Z. Vrcelj, A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete, Applied Mathematical Modelling 55 (2018) 551–568.
- D. Zorica, M. Žigić, N. Grahovac, Viscoelastic body colliding against a rigid wall with and without dry friction effects, Applied Mathematical Modelling, 45 (2017) 365–382.
- G. Hörmann, Lj. Oparnica, D. Zorica, Microlocal analysis of fractional wave equations, Zeitschrift für Angewandte Mathematik und Mechanik, 97 (2017) 217–225.
- T. M. Atanackovic, S. Konjik, S. Pilipovic, D. Zorica, Complex order fractional derivatives in viscoelasticity, Mechanics of Time-Dependent Materials, 20 (2016) 175–195.
- T. M. Atanackovic, M. Janev, Lj. Oparnica, S. Pilipovic, D. Zorica, Space-time fractional Zener wave equation, Proceedings of the Royal Society A, 471 (2015) 201406141–1–25.
- T. M. Atanackovic, S. Pilipovic, D. Zorica, An initial value problem arising in mechanics, Archive of Applied Mechanics, 84 (2014) 219–233.
- N. Challamel, D. Zorica, T. M. Atanackovic, D. T. Spasic, On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation, Comptes Rendus de Mécanique, 341 (2013) 298–303.
- T. M. Atanackovic, S. Pilipovic, D. Zorica, Forced oscillations of a body attached to a viscoelastic rod of fractional derivative type, International Journal of Engineering Science, 64 (2013) 54–65.
- T. M. Atanacković, S. Konjik, Lj. Oparnica, D. Zorica, Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods, Abstract and Applied Analysis, 2011 (2011) 975694–1–32.
- T. M. Atanackovic, S. Pilipovic, D. Zorica, Distributed-order fractional wave equation on a finite domain. Creep and forced oscillations of a rod, Continuum Mechanics and Thermodynamics, 23 (2011) 305–318.
- T. M. Atanackovic, S. Pilipovic, D. Zorica, Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod, International Journal of Engineering Science, 49 (2011) 175–190.
- S. Konjik, Lj. Oparnica, D. Zorica, Waves in viscoelastic media described by a linear fractional model, Integral Transforms and Special Functions, 22 (2011) 283–291.
- S. Konjik, Lj. Oparnica, D. Zorica, Waves in fractional Zener type viscoelastic media, Journal of Mathematical Analysis and Applications, 365 (2010) 259–268.