Heat conduction and diffusion-wave phenomena modelling

  1. M. Žigić, N. Grahovac, V. Glavardanov, D. Zorica, Nonstationary heat conduction inducing either fluid reservoir or thin layer heating, Zeitschrift für angewandte Mathematik und Physik, 76 (2025) 126-1-27.
  2. D. Zorica, S. M. Cvetićanin, Fractional telegrapher’s equation as a consequence of Cattaneo’s heat conduction law generalization, Theoretical and Applied Mechanics, 45 (2018) 35–51.
  3. V. Želi, D. Zorica, Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law, Physica A: Statistical Mechanics and its Applications 492 (2018) 2316–2335.
  4. T. M. Atanacković, S. Konjik, Lj. Oparnica, D. Zorica, The Cattaneo type space-time fractional heat conduction equation, Continuum Mechanics and Thermodynamics, 24 (2012) 293–311.
  5. T. M. Atanackovic, S. Pilipovic D. Zorica, Time distributed-order diffusion-wave equation. I. Volterra-type equation, Proceedings of the Royal Society A, 465 (2009) 1869–1891.
  6. T. M. Atanackovic, S. Pilipovic D. Zorica, Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations, Proceedings of the Royal Society A, 465 (2009) 1893–1917.
  7. T. M. Atanackovic, S. Pilipovic D. Zorica, Existence and calculation of the solution to the time distributed order diffusion equation, Physica Scripta, T136 (2009) 014012 (6pp).
  8. T. M. Atanackovic, S. Pilipovic, D. Zorica, Diffusion wave equation with two fractional derivatives of different order, Journal of Physics A: Mathematical and Theoretical, 40 (2007) 5319–5333.