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Department of Mathematics and Informatics, Faculty of Sciences,
University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
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In this paper, we propose the Boltzmann collision operator in the continuous internal energy
setting that describes polyatomic gases with temperature dependent specific heats or thermally
perfect (non-polytropic) gases. We adopt assumption, already presented in the BGK set up, of
letting molecular internal degrees of freedom to be temperature dependent, and provide a method
to determine its explicit dependence upon temperature from the given experimental data. We then
focus on macroscopic system of 14 moments in the non-polytropic setting. Computation of produc-
tion terms allows us to express the transport coefficients—bulk and shear viscosities and thermal
conductivity—in terms of parameters from the collisional cross section. The values of these param-
eters are fitted to match the experimental data for Prandtl number in a certain temperature range.
This led to improvement of the estimate obtained by Eucken formula, and allowed computation of
the dynamic pressure relaxation time or equivalently the bulk viscosity and comparison with its
estimates existing in the literature.

I. INTRODUCTION

Modelling polyatomic gases at the mesoscopic scale, i.e. within the framework of kinetic theory and Boltzmann
equation, is a challenging task [1]. Firstly, one has to take into account excitation of non-translational molecular
degrees of freedom which occurs during collisions. Excitation of electrons may occur as well and contribute to the
microscopic energy balance. Efficient way to model these effects is to introduce a single, continuous non-negative
variable that lumps up all the non-translational degrees of freedom of the molecule [2–5]. So far, this approach ended
up with a model in which macroscopic specific heats were constant, i.e. it yielded a model for polytropic, or calorically
perfect gases. Although conceptually simple, this way of modelling is not straightforward, but comprises a variety of
different models with subtleties aimed at covering diverse properties of polyatomic gases.

However, experimental evidence shows that specific heats of polyatomic gases, as well as other macroscopic proper-
ties like transport coefficients, may vary with temperature. Gases with such behavior are usually called non-polytropic,
or thermally perfect gases [6]. Their modelling within the continuous framework of kinetic theory is an utmost chal-
lenge, since the parameters which describe the processes at mesoscopic scale should yield temperature dependent
properties at macroscopic scale. Therefore, the aim of this paper is to establish a kinetic model, based upon the
Boltzmann equation with continuous internal energy state variable, describing a non-polytropic gas.

The idea of the kinetic model in the continuous setting is to associate a weight function to the distribution function
serving to match the proper equation of state at the macroscopic level. For the case of polytropic gases, its precise
form is given in [2], which allows to recover a linear dependence of the internal energy upon temperature (or the
constant specific heat cv) with a factor depending on the molecular degrees of freedom. Later on, in [3, 4] the weight
function is written in a general form as a function of the microscopic internal energy only, eventually enabling to
rewrite the macroscopic internal energy as a non-linear function of temperature [7, 8]. However, the specific form
of such a function that matches experimentally observed behavior of the specific heat remains unknown. Recently,
within the continuous approach, a more sophisticated model is provided in the BGK-setting [1, 9], that encom-
passes rotational and vibrational modes separately, by introducing two continuous internal energies and two weight
functions whose form is still unknown. Finally, an abstract framework for polyatomic gas modelling is provided in [10].

Another important aspect of the continuous kinetic approach to polyatomic gases, apart from matching the specific
heats, is computation of the transport coefficients, i.e. shear and bulk viscosity and thermal conductivity. To that
end one has to deal not only with usual macroscopic field variables like specific energy, but with transfer equations
for higher order moments in the form of balance laws. This line of analysis is interwoven with the results of ex-
tended thermodynamics [1], which yields macroscopic equations for rarefied gases that are equivalent to moment
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equations of the kinetic theory. In particular, simple asymptotic procedure, Maxwellian iteration, relates the re-
laxation times of non-equilibrium macroscopic variables to the transport coefficients. Thus, it may be applied to
linearized production terms computed from the collision operator to obtain explicit formulas for the viscosities and
the thermal conductivity. So far, 14 moments equations with explicit linearized production terms were established
in [11, 12] using the model from [4]. Physical interpretation is recently improved in [5] by considering the model
[2] and the cross section proposed within the rigorous analysis in [13]. The cross sections from [12, 13] contain
only one free parameter used to match viscosity exponent given in [14]. Then a satisfactory agreement with the
theoretical value of the Prandtl number given by Eucken’s formula [15] with the error up to 12% is observed in [5].
This result was improved in [16] by studying the 17 moments equations and by introducing frozen collisions that
do not change microscopic internal energies and consequently enriching the cross section from [13] with additional
parameters. The code for computation of production terms is given in [17]. Our aim is to exploit the procedure
used in the analysis of polytropic gases and apply it to the kinetic model of non-polytropic gases that will be developed.

In this study, the kinetic model itself will be build upon ideas embodied in recently proposed BGK models [18, 19],
developed for temperature dependent specific heats. In these models it was assumed that molecular degrees of
freedom are temperature dependent. In our approach this amounts to letting the weight function to be temperature
dependent. Using that concept we shall write the full collision operator and the Boltzmann equation by extending the
work done in [2, 5] to the case of non-polytropic gases. This will allow us to study the temperature dependence of the
weight function in great details. Namely, for any given dependence of the heat capacity cv upon temperature, taken
from the experimental data [20], we establish a method to explicitly determine the corresponding weight function for
several polyatomic gases.

In the second step, the focus will be on the 14 moments equations, derived from the Boltzmann equation using
the cross section and code for production terms computation from [16, 17]. By means of Maxwellian iteration [1] the
models for bulk and shear viscosities and thermal conductivity or the Prandtl number will be proposed, which contain
parameters coming from the cross section. For various polyatomic gases, we establish a method for the parameters
fitting that finds the best possible matching with experimentally measured shear viscosity and Prandtl number in a
certain temperature range. Moreover, for such a choice of parameters, we study the model for temperature dependent
bulk viscosity, a quantity hard to experimentally measure, related to the relaxation time of the dynamical pressure.
We observe, as in [1, 21, 22], that for CO2 the relaxation time of the dynamical pressure is much larger then the
ones for stress tensor and heat flux at room temperature and low pressure. Moreover, the model we derive estimates
that such a relation will remain on the whole temperature range on which the shear viscosity is measured, coinciding
qualitatively with [23]. The large bulk viscosity is predicted also for H2 coinciding with estimates in [21] and for CH4.
On the other hand, as in [21], the moderate bulk viscosity is estimated for N2 and CO.

Approach described above, based upon temperature dependent weight function, is very convenient for modelling
non-polytropic gases. This statement relies on the fact that collision operator acts only on the microscopic variables—
molecular velocities and internal energies. As a consequence, all previously obtained results for the Boltzmann equation
modelling polytropic gases, with the weight function depending only on the internal energy variable, can be formally
extended without any change. This also includes all the macroscopic models derived from the Boltzmann equation
using the moment method or the maximum entropy principle, see [1, 24] and references therein.

The rest of the paper is organized as follows. In Section II, we set up the macroscopic model of the internal energy
in terms of the specific heat at the constant volume. For certain gases, we provide an explicit dependence of both
specific heat and internal energy on temperature. In this Section, dimensionless quantities used in the rest of the
paper are defined as well. In Section III, we establish the Boltzmann equation modelling of a non-polytropic gas and
the corresponding 14 moments model at the macroscopic level allowing to establish models for transport coefficients.
In particular, we propose the weight function to be temperature dependent and provide its explicit dependence in
Section IV by considering measurements. Moreover, the rest of the Section deals with parameters fitting in order
to recover experimental data for the shear viscosity and the Prandtl number. The subsequent error analysis is also
provided. Finally, the dynamical pressure relaxation time related to the bulk viscosity is estimated and compared
with the existing results in Section V.
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II. MACROSCOPIC EQUATIONS OF STATE OF NON-POLYTROPIC GASES

In this paper, we study thermally perfect gases which are defined as gases that obey the thermal equation of state
connecting the hydrodynamic pressure p with temperature T ,

p = nkT, (1)

where n is the gas number density and k is the Boltzmann constant, k = 1.38×10−23J/K, and that do not necessarily
have constant specific heats. This kind of gas covers variety of applications, as the condition where a gas may not be
thermally perfect includes very special combination of high pressures and low temperatures [6]. In the literature they
are also known as non-polytropic gases [19].

Temperature dependence of the specific heat at the constant volume cv (here expressed in the units of kg·J/K)
provokes a non-linear dependence of the specific internal energy upon temperature, written in a general form as

de(T )

dT
= cv(T ), (2)

or after integration,

e(T )− e0 =

∫ T

T0

cv(θ) dθ, with e0 = e(T0), (3)

for some reference temperature T0. We define the reference energy,

e0 = T0 cv(T0), (4)

by following [19]. We note that polytropic (or calorically perfect) gas is characterized by cv = const., thus implying
e(T ) = cvT .

In the subsequent text, we will work with dimensionless quantities. At the first place, for the temperature T ∈
[T0, T1] for some T0, T1 given, we define the corresponding scaled temperature T̂ ,

T̂ =
T − T0

T1 − T0
⇒ T̂ ∈ [0, 1]. (5)

Moreover, we define dimensionless heat capacity ĉv and specific internal energy ê,

ĉv =
m

k
cv, ê =

e
k
m (T1 − T0)

, (6)

where m is a molecular mass in the units of kg. Using new argument T̂ , equation (3) becomes

dê(T̂ )

dT̂
= ĉv(T̂ ) ⇒ ê(T̂ )− ê0 =

∫ T̂

0

ĉv(θ̂) dθ̂, ê0 = ê(0) =
e0

k
m (T1 − T0)

. (7)

Moreover, we derive ê0 from (4),

ê0 = ĉv(0)
T0

T1 − T0
. (8)

The exact dependence of the energy ê upon temperature T̂ can be obtained only by specifying the gas when certain
experimental data can be observed. In this paper we focus on data provided by the National Institute of Standards
and Technology [20] listed in the monograph [25]. In particular, we take the experimental data for the specific heat at
constant pressure cp that is fitted using the Shomate equation. More precisely, [20] under Gas phase thermochemistry
data, shows the specific heat cp at the constant pressure of 1bar in the units of J/(mol K) as a function of the
temperature in K scaled by 1000, i.e. as a function of T/1000,

cp(T ) = A+B

(
T

1000

)
+ C

(
T

1000

)2

+D

(
T

1000

)3

+ E

(
T

1000

)−2

, (9)
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with already determined explicit values of the coefficients A, B, C, D and E for each particular gas. It is then an
easy task to extract, from this data, dimensionless specific heat ĉv at the constant volume as a function of the scaled
temperature T̂ defined in (5),

ĉv(T̂ ) =
cp(T0 + T̂ (T1 − T0))

R
− 1, (10)

where R = 8.314 J/(mol K) is the universal gas constant.

As an illustration of macroscopic considerations, we provide in Figure 1 the nonlinear fit of dimensionless specific
heat ĉv from (9)-(10), based upon experimental data for a certain choice of gases and the temperature range

T ∈ [300, 6000]K, leading to T̂ =
T − 300

5700
∈ [0, 1], (11)

according to (5). It can be noticed that ĉv is monotonically increasing function of T̂ , except for Cl2 and Br2 on
high temperatures. Moreover, the temperature range in which ĉv is constant, and thus correspond to a polytropic
approximation, is rather narrow and will be studied in detail in the Section IV A 3.

III. NON-POLYTROPIC GAS MODEL AT THE KINETIC LEVEL

A. The Boltzmann equation

In the continuous setting, the form of the Boltzmann equation that models polytropic gases is well understood [2–4].
Its main feature is to associate a molecular velocity–internal energy pair (v, I), v ∈ R3, I ∈ [0,∞) to each molecule of
mass m. Then the distribution function f depends on the usual macroscopic variables, time t ≥ 0 and space position
x ∈ R3, and on the microscopic pair of variables (v, I)

f := f(t, x, v, I) ≥ 0,

whose evolution is governed by the Boltzmann equation,

∂tf + v · ∇xf = Q(f, f)(v, I). (12)

The collision operator Q(f, f)(v, I) describing an influence of elastic binary collisions on the change of the distribution
function is given in [2] as

Q(f, f)(v, I) =

∫
R3×[0,∞)×[0,1]2×S2

(
f ′f ′∗

(
I I∗
I ′ I ′∗

)α
− ff∗

)
B(1−R)R

1
2φα(r)ψα(R) dσ dr dR dI∗ dv∗, (13)

with standard abbreviations f ′ := f(t, x, v′, I ′), f ′∗ := f(t, x, v′∗, I
′
∗), f∗ := f(t, x, v∗, I∗), where (v′, I ′) and (v′∗, I

′
∗)

are pre-collisional quantities, while (v, I) and (v∗, I∗) are post-collisional ones related through parameters of the
Borgnakke-Larsen procedure [26], σ ∈ S2 (S2 is the unit sphere in R3), r,R ∈ [0, 1], and the total energy in the

center-of-mass framework E := m
4 |v − v∗|

2
+ I + I∗ = m

4 |v
′ − v′∗|

2
+ I ′ + I ′∗, namely,

v′ =
v + v∗

2
+

√
RE

m
σ, v′∗ =

v + v∗
2
−
√
RE

m
σ,

I ′ = r(1−R)E, I ′∗ = (1− r)(1−R)E.

(14)

The form of partition functions φα(r) and ψα(R)

φα(r) := (r(1− r))α, ψα(R) := (1−R)2α (15)

is related to the choice of the weight function

ϕ(I) = Iα, (16)

where α > −1 is a parameter of the model. In the polytropic gas case it is assumed to be constant. Scenarios for
various gases that relate α to the number of molecular degrees of freedom and thus provide a theoretical estimate
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for α in the polytropic regime are given in [5]. In the present manuscript, a more sophisticated analysis based on
experimental data will be given in Section IV A 3. Note that the form of the collision operator (13) as much as the
Boltzmann model itself (12) correspond to the non-weighted functional setting, as described in [5].

The cross section B := B(v, v∗, I, I∗, R, r, σ) ≥ 0 is supposed to satisfy micro-reversibility conditions

B = B(v′, v′∗, I
′, I ′∗, R

′, r′, σ′) = B(v∗, v, I∗, I, R, 1− r,−σ). (17)

In this paper, we adopt the cross section model proposed in a rigorous study of the Cauchy problem for polyatomic
gases in [13] and enriched with additional parameters in [16],

B(v, v∗, I, I∗, R, r, σ) = K

{
Kα ω

[
R
ζ
2 |v − v∗|ζ + η

((
r(1−R)

I

m

) ζ
2

+

(
(1− r)(1−R)

I∗
m

) ζ
2

)]

+(1− ω)δr−r′δR−R′ (mE)
−ζ/2

[(m
2
|v − v∗|2

)ζ
+ ηf

(
Iζ + Iζ∗

)]}
,

(18)

where the angular part of cross section is assumed constant, denoted by K, with the following physical dimensions

[K] = [t]
[ ρ
m

] [kT
m

] ζ
2

=
s

m3

(
m3Pa

kg

) ζ
2

. (19)

The constant Kα serves to achieve consistency of the pure polyatomic collision operator with the monatomic limit as
explained in [16],

Kα =
2 Γ(2α+ 7/2)√
π Γ(α+ 1)2

,

and ζ > 0, 0 ≤ ω ≤ 1, η > 0, ηf > 0 are parameters of the model. Note that ω can be interpreted as a parameter
that convexly splits the pure polyatomic collision operator and the frozen one which describes collisions that do not
change internal energies of particles implying R = R′ and r = r′ in (14).

Properties of the collision operator (13), such as its weak form, collision invariants and the H-theorem can be found
in [2, 5]. Here we will briefly summarize the conservation property of the collision operator weak form for the set of

test functions m, mv and m
2 |v|

2
+ I, also called collision invariants,

∫
R3×[0,∞)

Q(f, f)(v, I)

 m
mv

m
2 |v|

2
+ I

 dI dv = 0.

As a consequence, this property implies conservation laws of the mass density ρ, momentum density ρU and the total
energy density as the sum of kinetic energy density 1

2ρ|U |
2 and internal energy density ρe, macroscopic quantities

that can be defined as moments of the distribution function,

ρ =

∫
R3×[0,∞)

f m dI dv,

ρU =

∫
R3×[0,∞)

f mv dI dv,

ρ e =

∫
R3×[0,∞)

f
(m

2
|v − U |2 + I

)
dI dv.

(20)

On the other side, the entropy production is defined with the help of test function log(f(v, I)I−α), i.e.

D(f) =

∫
R3×[0,∞)

Q(f, f)(v, I) log(f(v, I)I−α) dIdv. (21)

The second part of the H-Theorem states that D(f) = 0 if and only if the distribution function is of the form [2, 5]

f(v, I) =
ρ

m

1

Z(T )

( m

2πkT

) 3
2

Iα e−
1
kT (m2 |v−U |

2+I), (22)
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for ρ, T > 0 and U ∈ R3, where Z(T ) is a partition (normalization) function

Z(T ) =

∫
[0,∞)

Iαe−
I
kT dI = (kT )α+1Γ(α+ 1),

where Γ represents the Gamma function.

The local equilibrium state can be defined by allowing ρ, T , U in (22) to depend on t, x, or by formulating the
maximum entropy principle as in [5], both procedures leading to the local equilibrium distribution function,

feq(t, x, v, I) := Iα
ρ

m

( m

2πkT

) 3
2 1

Γ(α+ 1)

1

(kT )
α+1 e−

1
kT (m2 |v−U |

2+I), (23)

with ρ = ρ(t, x), U = U(t, x) and T = T (t, x). This local equilibrium distribution function (23) allows to compute
the internal energy law by following its definition (20).

e =

(
α+

5

2

)
k

m
T, (24)

for α = const., which could be easily related to the standard form

e =
D

2

k

m
T, (25)

where D is an integer interpreted as molecule’s degrees of freedom, related to α as follows

D = 2α+ 5. (26)

For example, in the case of (non)linear molecules with translational and rotational degrees of freedom, but without
excitation of vibrational ones, we have D = 5(6) which implies α = 0(1/2) [5]. These interpretations of the specific
internal energy hold for a gas in equilibrium state at rest at temperature T , when the specific heat cv is constant,
cv = D

2
k
m , and the equipartition law is valid [19]. Although they serve as a model for polytropic gases and are assumed

to be valid in non-equilibrium, departure from an equilibrium state may cause variations of cv (and consequently D
and α) that sometimes cannot be ignored.

Contrary to semi-classical or discrete energy models [7, 15, 27–29], modelling of non-polytropic gases is still an
open question within the continuous approach. Possible extension to the case of a non-polytropic gas starts with the
idea [3, 4] of finding another weight function ϕ(I), different from Iα given in (16), which will eventually capture a
non-linear dependence of the internal energy upon temperature. This led to the moment equations hierarchy written
in terms of—still undetermined—weight function.

Another strategy, proposed in [18, 19], is to let degrees of freedom to be temperature dependent, i.e. to assume
D = D(T ). In [19], such D(T ) is carefully called extended internal degrees of freedom in the non-equilibrium case, as
this quantity may not be an integer anymore.

Inspired by these ideas, we build a model of non-polytropic gases with the Boltzmann equation (12)-(13) by letting
the parameter α to depend on temperature T (t, x). Since the collision operator acts only on (v, I), and (t, x) are seen
as parameters, all previously obtained results for the Boltzmann equation in the polytropic case remain valid in the
non-polytropic case also. In particular, the local equilibrium distribution function (23) has the same functional form,
except that parameter α(T ) now also depends on t and x through temperature T . Then, the internal energy density
in equilibrium is of the same form as (24), and since in the light of [8] the total internal energy is the same in the
equilibrium and non-equilibrium, we propose the following model of the internal energy,

e(T ) =

(
α(T ) +

5

2

)
k

m
T, (27)

where α is the parameter depending on T . The goal of the upcoming Section IV is to determine this parameter for a
specific choice of gases, by matching with experimental data.
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B. Macroscopic models for a rarefied non-polytropic gas

Although kinetic theory provides rather accurate description of non-equilibrium processes in gases, they are usually
monitored through the behavior of macroscopic observables. We saw in Section III A that conserved quantities (20) are
related to the local equilibrium state and the corresponding distribution function (23). Any stronger departure from
equilibrium requires more information on approximate distribution function, which may lead either to the application
of asymptotic methods, or to the use of moment methods.

To exploit the potential of our model as much as possible, we will turn to the moment method and describe non-
equilibrium processes by means of 14 moments model. Apart from conservation laws of mass, momentum and energy,
it comprises the balance laws for the momentum flux (pressure tensor) and the energy flux (heat flux). This model
turns out to be equivalent to the 14 moments model derived within the framework of extended thermodynamics [1].
In the sequel, this equivalence will provide a mean for determination of transport coefficients in terms of parameters
of the kinetic model, and their further use in matching the model with experimental data.

In order to accurately describe the non-equilibrium state of a polyatomic gas we need the fields of pressure tensor
pij and heat flux qi, i, j = 1, 2, 3. These quantities can be defined as moments of the distribution function as well,(

pij
qj

)
=

∫
R3×R+

(
mci cj(

m
2 |c|

2
+ I
)
cj

)
f dI dv, (28)

where c = v − U is the peculiar velocity. In the spirit of [8], it is important to note that the trace of pressure tensor
can be related either to the non-equilibrium pressure P containing a dynamical pressure Π or equivalently to the
translational part of the internal energy density ρetr or translational temperature θtr. More precisely,

3∑
`=1

p`` = 3P = 3(p+ Π) = 2ρetr = 3nkθtr =

∫
R3×[0,∞)

m|c|2fdI dv. (29)

With this notation, the pressure tensor (28) can be written in a trace-free form,

pij = σij + Pδij , with

3∑
i=1

σii = 0.

Fourteen moments macroscopic model governing evolution of the mass density, momentum density, momentum flux,
energy density and heat flux has been already derived from the Boltzmann equation in the polytropic setting [5, 11].
In our notation and non-polytropic setting it reads

∂tρ+

3∑
j=1

∂xj (ρUj) = 0,

∂t(ρUi) + ∂xiP +

3∑
j=1

∂xj (ρUi Uj + σij) = 0,

∂tσij + 2P
∂U〈j

∂xi〉
+

3∑
k=1

{
∂xk

(
Ukσij + p〈ij〉k

)
+ 2σk〈i

∂Uj〉

∂xk

}
= P〈ij〉, (30)

∂tP +

3∑
k=1

(
Uk∂xkP +

5

3
P∂xkUk

)
+

1

3

3∑
k,j=1

{∂xkpjjk + 2σkj∂xkUj} =
1

3

3∑
k=1

Pkk,

∂t (ρe) +

3∑
k=1

{P∂xkUk + ∂xk (ρeUk + qk)}+

3∑
k,j=1

σkj∂xkUj = 0,

∂tqi −
(
e+

P

ρ

)
∂xiP +

3∑
k=1

{
−
(
e+

P

ρ

)
∂xkσik −

σik
ρ
∂xkP + qk∂xkUi + ∂xk (qiUk + qik)

+

3∑
j=1

(
−1

ρ
σij∂xkσkj + pijk∂xkUj

)}
= Qi,
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where A〈ij〉 is the deviatoric part of the second order tensor Aij , defined as

A〈ij〉 :=
Aij +Aji

2
− δij

1

3

3∑
`=1

A``.

Note that this system corresponds to the one from [8].

To close the system (30), we need to compute the non-convective fluxes,(
pijk
qij

)
=

∫
R3×R+

(
mci cj ck(

m
2 |c|

2
+ I
)
cicj

)
f dI dv. (31)

To that end we will use the 14 moments approximation of the distribution function f , obtained in [5] via the maximum
entropy principle, which yields

pijk =

(
α+

7

2

)−1

(qiδjk + qjδki + qkδij) , qij =

(
α+

9

2

)
p

ρ
σij +

p

ρ

((
α+

9

2

)
P− p

)
δij .

To compute production terms,(
Pij
Qi

)
=

∫
R3×R+

(
mci cj(

m
2 |c|

2
+ I
)
ci

)
Q(f, f)(v, I) dI dv, (32)

apart from specifying f we have to choose the cross section. In this paper, we adopt the cross section model (18), that
is also used in the study of transport coefficients in the case of polytropic gases [5, 16]. Therefore, for any i, j = 1, 2, 3,
production terms (32) are computed with the help of the code available in [17]. For the sake of brevity, we will not
give their explicit form here, although it can be recovered from the analysis of the next Subsection.

C. Modelling of transport coefficients using 14 moments equations

In this Section we aim to determine the transport coefficients—shear and bulk viscosities and thermal conductivity—
using the 14 moments model. To that end we will combine the results of previous Section, i.e. production terms (32),
with the results of extended thermodynamics [1]. As a first step we write the non-equilibrium pressure P in terms
of the dynamical pressure Π as in (29). The expression (1), together with the non-polytropic setting (2), allows to
rewrite the derivative of internal energy density as follows

d(ρe) = (e− cvT ) dρ+ cv
m

k
dp.

Using this relation, the energy conservation law (30) is equivalent to equation for hydrodynamic pressure p,

∂tp+
(p+ Π)

ĉv

3∑
k=1

∂xkUk +

3∑
k=1

∂xk (pUk) +
1

ĉv

 3∑
k,j=1

σkj∂xkUj +

3∑
k=1

∂xkqk

 = 0.

Then, equation for P given in (30) implies a balance law for Π,

∂tΠ +
2ĉv − 3

3ĉv
(p+ Π)

3∑
k=1

∂xkUk +

3∑
k=1

∂xk (ΠUk) +
2ĉv − 3

3ĉv

3∑
k,j=1

σkj∂xkUj

+
1

3

3∑
k,j=1

∂xkpjjk −
1

ĉv

3∑
k=1

∂xkqk =
1

3

3∑
k=1

Pkk.

Closure procedure of extended thermodynamics [1] shows that linearized production terms can be expressed in
terms of non-convective fluxes σij , Π, and qi and corresponding relaxation times, τσ for stress tensor, τΠ for dynamical
pressure and τq for heat flux [1],

P〈ij〉 = − 1

τσ
σij ,

1

3

3∑
k=1

Pkk = − 1

τΠ
Π, Qi = − 1

τq
qi. (33)
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On the other side, asymptotic procedure of Maxwellian iteration recovers classical linear constitutive relations of
Navier-Stokes-Fourier model, and yields relations between transport coefficients—shear viscosity µ, bulk viscosity ν
and thermal conductivity κ—and relaxation times τσ, τΠ, τq [1](p.195),

µ = p τσ, ν =
2ĉv − 3

3ĉv
p τΠ, κ =

k

m
(ĉv + 1) p τq. (34)

Since linearized production terms (32) emerging from the kinetic model (12), (13), (18) are completely equivalent
to production terms (33), and procedure described in [17] facilitates the computation of relaxation times, we may

use (34) to express the transport coefficients in terms of scaled temperature T̂ ∈ [0, 1] and parameters of the kinetic
model. Therefore, the shear viscosity µ reads

µ(T̂ , α, ζ, ω, η, ηf ,K) =
m

K

(
k

m

(
T̂ (T1 − T0) + T0

))1− ζ2

× 15 c1
4

[
ωc2

(
15 η k1 + k2 2ζ+2 (ζ + 5)

)
+ (1− ω)c3

(
15 ηf k3 + k4 2ζ+1 (2ζ + 5)

) ]−1

,

(35)

while the bulk viscosity ν is

ν(T̂ , α, ĉv, ζ, ω, η,K) =
m

K

(
2ĉv − 3

3ĉv

)(
k

m

(
T̂ (T1 − T0) + T0

))1− ζ2

× 3 c1
(α+ 1) (4α+ ζ + 7)

(2α+ 5)

[
ω c2

{
6η k1(4α+ ζ + 4) + k2 2ζ+5(α+ 1)

}]−1

,

(36)

and the thermal conductivity κ is given by

κ(T̂ , α, ĉv, ζ, ω, η, ηf ,K) =
(ĉv + 1) k

K

(
k

m

(
T̂ (T1 − T0) + T0

))1− ζ2

× 9c1

(
α+

7

2

)
(4α+ 2ζ + 11) (4α+ ζ + 7)

×

[
ω c2

(
2α+ ζ +

11

2

){
η k1 9

(
8α3 + 28α2 + 2α(68− 7ζ) + (16− 3ζ)ζ + 156

+ (2α+ ζ + 2) ((2α+ ζ + 10)ζ + (6− 4α)α+ 2)
)

+ k2 2ζ+5
(
12α2 + α(7ζ + 57) + ζ(ζ + 15) + 60

)}
+ (1− ω)2c3 (4α+ ζ + 7)

{
3ηf k3

(
24α2 + 2α

(
6ζ2 + 9ζ + 65

)
+ ζ(3ζ(ζ + 12) + 59) + 176

)
+ k4 2ζ+2

(
12α2 + α(11ζ + 65) + ζ(4ζ + 35) + 88

)}]−1

,

(37)

where constants are

c1 = Γ(α+ 1)2 Γ

(
2α+ ζ +

11

2

)
Γ

(
4α+ ζ + 7

2

)
, c2 = Γ

(
2α+

7

2

)
Γ

(
2α+ ζ +

11

2

)
,

c3 =
√
π Γ(α+ 1) Γ

(
4α+ ζ + 7

2

)
Γ

(
4α+ ζ + 11

2

)
,

k1 = π Γ

(
α+

ζ

2
+ 1

)2

, k2 = Γ(α+ 1)2 Γ

(
ζ + 3

2

)
Γ

(
ζ + 5

2

)
,

k3 =
√
π Γ(α+ ζ + 1), k4 = Γ(α+ 1) Γ

(
ζ +

5

2

)
,

k is the Boltzmann constant and m molecular mass in the units of kg computed as [30], Section 2.10,

m = Mr u, (38)
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where Mr is the relative molecular mass, a dimensionless quantity whose values can be found in [20], u is the unified
atomic mass unit u = 1.6605402× 10−27kg. Parameter α(T ) comes from the evaluation of the collision operator (13)
and is modelled to be temperature dependent through its relation to the specific heat cv as it will be explained in
Section IV. Parameters of the model are ζ > 0, 0 ≤ ω ≤ 1, η > 0, ηf > 0 and K > 0 with physical dimensions (19).

IV. DETERMINATION OF THE MODEL PARAMETERS

In Section III we provided a kinetic model for non-polytropic gases, namely the Boltzmann equation (12)-(13) with
the cross section (18). This scheme is rather general since it contains several parameters which may be adapted to
provide a proper description of particular physical phenomena. Aim of this Section is to propose a procedure, based
upon experimental data, which determines all the parameters of the kinetic model. In particular, parameter α(T )
will be related to specific heat cv(T ) through specific internal energy, using equations (2) and (27). Then, inspired
by [14], parameter ζ will be related to the shear viscosity law using its experimental data; value of the constant K
will be chosen in such a way to reproduce the measured value of the shear viscosity at room temperature. Finally,
parameters ω, η and ηf will be determined to obtain the best possible fit with the measured value of Prandtl number
at certain temperatures.

A. Determination of parameter α from the specific internal energy

In order to solve the problem (2)-(27) for α using experimental data, we need to rewrite (27) in dimensionless form,
by first noticing

e
k
mT

= α+
5

2
,

and then scaling according to (6),

ê

T̂ + T0

T1−T0

= α+
5

2
. (39)

Therefore, the function α(T̂ ) can be written in terms of an internal energy as

α(T̂ ) =
ê(T̂ )

T̂ + T0

T1−T0

− 5

2
. (40)

Finally, gathering (7) and (40) imply explicit expression of α in terms of the specific heat ĉv,

α(T̂ ) = −5

2
+

(
T̂ +

T0

T1 − T0

)−1
((

α0 +
5

2

)
T0

T1 − T0
+

∫ T̂

0

ĉv(θ̂)dθ̂

)
. (41)

with α0

α0 = α(0) = ê0
(T1 − T0)

T0
− 5

2
= ĉv(0)− 5

2
. (42)

1. Relation to the ratio of specific heats

Another interpretation of the parameter α can be obtained by using definition of the ratio of the specific heats

γ =
cp
cv

=
1

cv
+ 1, (43)

that yields the alternative definition to (7) of the internal energy,

dê(T̂ )

dT̂
=

1

γ(T̂ )− 1
. (44)
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thanks to this relation and differentiation of (40) with respect to T̂ leads to

γ(T̂ ) =

(
T̂ + T0

T1−T0

)
α′(T̂ ) + α(T̂ ) + 7/2(

T̂ + T0

T1−T0

)
α′(T̂ ) + α(T̂ ) + 5/2

, (45)

which can be reduced to the known relation γ = (α+ 7/2)/(α+ 5/2) for α = const. in the polytropic case.

2. Relation to the Eucken formula for the Prandtl number

The Prandtl number in our notation is defined as [31]

Pr = ĉp
k

m

µ

κ
. (46)

It is usually estimated using the Eucken formula, written in terms of the specific heats ratio (43) as

Pr(Eucken) =
4γ

9γ − 5
. (47)

The relation to the parameter α can be obtained using (45), which reduces to Pr(Eucken) = 2(2α+ 7)/(4α+ 19) in the
case of polytropic gases [1].

3. Examples of the parameter α

We provide in Figure 2 examples of α(T̂ ) for the most common gases, such as nitrogen N2, oxygen O2, nitric oxide
NO, carbon monoxide CO, hydrogen H2, chlorine Cl2, bromine Br2, carbon dioxide CO2, methane CH4. Our aim is
to demonstrate how α(T̂ ) determined from the experimental data for the specific heat cv(T ), provided by National
Institute of Standards and Technology [20] listed in the monograph [25], changes with temperature. Variation of α

with T̂ indicates non-polytropic behavior of the gas. Note that the temperature range in this Section is [300, 6000]K
as given in (11).

Moreover, the behavior of α is quantitatively studied in Table I. We firstly focus on the full temperature interval
T ∈ [300, 6000]K scaled to T̂ ∈ [0, 1] using (11) and provide values of α at scaled room temperature T̂ = 0 and at

T̂ = 1. One can observe that the value of α(0) is close to zero for N2, O2, NO, CO and H2, coinciding with the
theoretical estimate (26) obtained for D = 5 that corresponds to translational and rotational degrees of freedom of a
linear molecule.

Then, the focus is on the polytropic behavior of gases. We define the polytropic regime as the temperature range on
which the relative change of heat capacity ĉv is less than 5%, thus approximately constant. From the Figure 1, such a
behavior is observed around the full temperature interval endpoints T̂ = 0 and T̂ = 1, confirming the caricature from
[28]. Thus, we consider the low T ∈ [300, Tl]K and the high temperature interval T ∈ [Th, 6000]K, both scaled using

(11) to T̂ ∈ [0, T̂l] and T̂ ∈ [T̂h, 1], respectively. In Table I, temperatures Tl and Th are specified, as much as values

of α at the corresponding scaled points T̂l and T̂h. For the low temperature range, only Tl > 400K is specified, as
otherwise we cannot claim almost constant behavior of ĉv over meaningfully wide temperature range. One can notice
that the polytropic behavior is experienced by gases that have, apart from translational, only rotational degrees of
freedom excited at room temperature i.e. when α(0) close to 0. On the other side, on the high temperature range when
vibrations appear as well, all considered gases formally behave as polytropic. However, on such high temperatures a
more complex modelling has to be performed. Theoretically, linear molecules for the fully excited vibrational modes,
are estimated to have D = 6 degrees of freedom corresponding to α = 1/2 [5]. The value α(T̂h) suggests that this is
a reasonable approximation for N2, NO and CO.

B. Viscosity exponent ζ

Inspired by [14], we will determine the parameter ζ using measurements of the shear viscosity as a function of
temperature. More precisely, from [20] we use isobaric experimental data corresponding to the constant pressure
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gas
Temperature interval T̂ ∈ [0, 1]

Polytropic low temperature

interval T̂ ∈ [0, T̂l]

Polytropic high temperature

interval T̂ ∈ [T̂h, 1]

α(0) α(1) Tl (in K) α(T̂l) Th (in K) α(T̂h)

N2 0.0023 0.8003 600 0.023 2670 0.5188
O2 0.0348 1.17 430 0.0511 4930 1.0505
NO 0.0901 0.8693 550 0.1064 2310 0.5703
CO 0.0059 0.8257 550 0.0241 2580 0.5388
H2 -0.0301 0.8487 890 0.0107 4660 0.6731
Cl2 0.5869 1.1821 / 5490 1.1891
Br2 0.8719 1.2325 / 5320 1.2478
CO2 0.9765 3.6137 / 2940 3.0544
CH4 0.7949 7.4567 / 3040 5.8671

TABLE I. Behavior of α(T̂ ) on the scaled temperature interval [0, 1] corresponding to the original temperature interval of
[300, 6000]K. Values of α at this temperature interval endpoints are presented. We define a polytropic regime as the temperature
range over which the relative change of ĉv is less than 5%. As a matter of fact, the polytropic regime is around endpoints of the
considered temperature range, defining two intervals: of low temperature [300, Tl]K scaled to [0, T̂l] and of high temperature

[Th, 6000]K scaled to [T̂h, 1]. On each polytropic interval, we provide the value of α at endpoints.

gas T0 T1 µ0 ζ s = 1− ζ/2 s from [14]

N2 300 2000 17.89 0.6245 0.6878 0.738
O2 300 2000 20.652 0.5952 0.7024 0.773
CO 300 500 17.853 0.5259 0.7371 0.734
H2 300 1000 8.9385 0.6056 0.6972 0.668

CO2 300 2000 15.003 0.4008 0.7996 0.933
CH4 300 600 11.136 0.3806 0.8097 0.836

TABLE II. Temperature interval [T0, T1]K on which viscosity of a gas is measured as a function of temperature for a constant
pressure p = 1bar, the observed value µ0 of the viscosity in µPa·s at T0 and viscosity exponent ζ obtained through the fit of
model function (49) with respect to the experimental data provided in [20]. Assuming µ = µ0(T/T0)s, such ζ yields the value
of s = 1− ζ/2 that matches the measurements. This value is compared with the one proposed in [14], Table 14, page 232, valid
for the temperature range [293, 373]K.

p = 1bar for shear viscosity on certain temperature interval [T0, T1]K in physical units of µPa·s. The first part of
Table II shows the temperature interval and the observed value µ0 of the shear viscosity at temperature T0 for certain
gases.

In the model for the shear viscosity (35), we firstly choose the value of dimensional constant K whose physical

dimensions are determined in (19), so that the shear viscosity at initial temperature T̂ = 0 matches with the observed
value µ0,

K =
µ(0, α0, ζ, ω, η, ηf , 1)

µ0 × 10−6
, (48)

where α0 is as in (42). For such K and α0, the model for shear viscosity is reduced to the model function

µ(T̂ ) = µ0

(
T̂

(
T1

T0
− 1

)
+ 1

)1− ζ2
, (49)

which corresponds to the model used in [14]. Then, the goal is to find the parameter ζ in order to fit the experimental
data. Results are shown in Table II.

Such determined viscosity parameter ζ can be compared with the one proposed in [14]. Indeed, in [14] it is assumed
that µ = µ0(T/T0)s, which is the dimensional form of (49) with s = 1 − ζ/2. The values of s are given in [14],
Table 14, page 232, valid in the temperature range [293, 373]K. The values of exponents are compared in Table II. It
may be observed a discrepancy between the values of exponent s in the present study and [14]. Although the models
are formally equivalent, computation of the exponent s in our model is based upon the data in considerably wider
temperature interval than in [14], which may be considered the main cause of discrepancy.
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gas ω η ηf K from (48)
Maximal error

(in %) of
14 moments model

Maximal error
(in %) of

Eucken formula

N2 0.0056 88.3525 0.0002 4.2417×10−19 4.37 4.98
O2 0.1217 1.8474 0.0078 5.3526×10−19 1.89 6
CO 0.1256 0.7787 0.1782 9.2641×10−19 1.2 1.66
H2 1.1823×10−6 4.4763 7.3171×10−6 5.5910×10−19 3.1 10.31

CO2 8.4881×10−7 0.4613 6.5472×10−7 3.4604×10−18 9.73 21
CH4 3.0364×10−6 0.5395 5.7028×10−6 4.3344×10−18 5.83 17.21

TABLE III. Parameters ω, η and ηf , with the corresponding value of K from (48), chosen to fit the 14 moments model for the
Prandtl number given by (46), (10), (35), (37) with the experimental data, its maximal absolute relative error (in %) and the
maximal absolute relative error (in %) of the Eucken formula introduced in (47).

C. Determination of parameters (ω, η, ηf ) from the Prandtl number

For the chosen K as in (48), ζ from Table II, α(T̂ ) from (41) and ĉv(T̂ ) as in (10), models for viscosity (35)

and thermal conductivity (37) become functions of T̂ that depend on parameters ω, η and ηf . The next goal is to
determine these parameters in order to catch some experimental behavior of a chosen gas.

Following ideas of [16], we can determine parameters ω, η and ηf in order to match the Prandtl number defined as
(46). On one side, as discussed in the previous paragraph, model functions of µ and κ from (35) and (37) together
with the fit for ĉp as in (10), provide a model of the Prandtl number. On the other side, using experimental data
for ĉp, µ and κ given in [20], we can compute the experimentally observed value of the Prandtl number at certain
temperatures. Therefore, we can fit the model for the Prandtl number with respect to this data in order to find the
set of parameters ω ∈ [0, 1], η ≥ 0, ηf ≥ 0 coming from the choice of the cross section (18).

We choose to find the best possible fit for parameters ω, η and ηf using built-in function FindFit in the Mathematica
notebook. Results are presented in Table III, together with the maximal error of the 14 moments model for such
choice of parameters. This is compared to the error of the Eucken formula introduced in (47). As a matter of fact, the
error coming from the 14 moments model is lower. In addition to maximal error given in Table III, Figure 3 shows
its behavior as a function of temperature.

V. RELAXATION TIMES

Determination of the model parameters reveals the main advantage of our procedure—we obtain a completely
closed kinetic model of non-polytropic gases (12)-(13) and (18), without undetermined parameters, and we come into
position to express explicitly the relaxation times in 14 moments model once the production terms are computed
through evaluation of the collision operator (13). Since the parameters are determined through matching measurable
macroscopic quantities (specific heats, viscosity and Prandtl number), relaxation times τσ and τq are also harmonized
with experimental data. However, the importance of our results lies in the fact that we can estimate the relaxation
time for the dynamic pressure τΠ, or equivalently the bulk viscosity ν, a quantity which can hardly be measured [1].

Inspired by [1], Table 8.2, we provide estimates for relaxation times τσ, τq and τΠ at temperature T = 300K and
pressure p = 69mmHg, using models (35)–(37) and relations (34). As a matter of fact, the experimentally observed
specific heat cp, shear viscosity and thermal conductivity are almost constants with respect to the pressure p, which
allows us to use previous results obtained for p = 1bar and, in particular, values of parameters given in Tables II and
III. Results are presented in the first part of Table IV. As in [1, 21–23], for CO2 we observe that τΠ is of multiple
order of magnitudes greater than relaxation times τσ and τq. Moreover, model predicts the same behavior of H2 (as
also observed in [21]) and CH4. On the other hand, our prediction of a moderate relaxation time τΠ with respect to
τσ for N2 and CO coincides with estimates in [21].

The explicit expressions for relaxation times allow to study their behavior in more details. More precisely, we study
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gas
Values of relaxation times at T0

Relative change (in %) of
relative relaxation times at T1

with respect to T0

τσ τq τΠ τ̂∗σ τ̂∗q

N2 1.9447×10−9 2.6449×10−9 5.6208×10−9 10.48 7.64
O2 2.2449×10−9 3.0865×10−9 7.5744×10−9 6.31 3.32
CO 1.9407×10−9 2.6461×10−9 9.5629×10−9 -0.02 -0.08
H2 9.7166×10−10 1.3999×10−9 1.6306×10−4 1.84 1.68

CO2 1.6309×10−9 2.1946×10−9 1.1160×10−3 2.36 -1.67
CH4 1.2105×10−9 1.6325×10−9 2.1249×10−4 0.49 -1.04

TABLE IV. Relaxation times at T0 = 300K and p = 69mmHg for certain gases as estimated by the model (35)–(37), and their

relative change (50) at T = T1 (or T̂ = 1) with respect to the initial state at T = T0 (or T̂ = 0), with temperatures T1 from
Table II.

relative relaxation times of τσ and τq with respect to τΠ, which depend solely on temperature T̂ ,

τ̂σ(T̂ ) =
τσ
τΠ
, τ̂q(T̂ ) =

τq
τΠ
.

Already the first part of Table IV provides an estimate of these quantities at temperature T̂ = 0 or T = T0. In
addition, we can study their temperature dependence on the whole range on which viscosity is measured, that is for
T̂ ∈ [0, 1] or T ∈ [T0, T1], with T1 from Table II. We observe that the relative relaxation times τ̂σ(T̂ ) and τ̂q(T̂ ) are

monotonic functions of T̂ and therefore the most extreme deviation from their state at T̂ = 0 is at state T̂ = 1. This
motivates us to study the following relative change of these relaxation times,

τ̂∗σ =
τ̂σ(1)− τ̂σ(0)

τ̂σ(0)
, τ̂∗q =

τ̂q(1)− τ̂q(0)

τ̂q(0)
. (50)

Results are shown in the second part of the Table IV. We conclude that the order of magnitudes at T̂ = 0 or T = T0

for the relaxation times are preserved on the whole temperature range T̂ ∈ [0, 1] or T ∈ [T0, T1], with T1 from Table
II.

VI. CONCLUSIONS AND OUTLOOK

In this study we proposed a closed kinetic model of non-polytropic gases, i.e. polyatomic gases with temperature
dependent specific heats, namely the Boltzmann equation (12)-(13) with the cross section (18). Term closed means
that we developed a procedure for determination of the model parameters, some of which are temperature dependent
and some constant, through their accommodation to accessible experimental data. Since these data provide informa-
tion about macroscopic observables, the procedure relied on an appropriate macroscopic description based upon the
Boltzmann equation for polyatomic gases.

Our study was inspired by recent generalizations within the BGK kinetic framework [18, 19], which assumed
temperature dependence of a parameter corresponding to the molecular degrees of freedom. However, we used a
kinetic description of polyatomic gases based upon complete collision operator [2], in which the crucial role is played
by a parameter α that facilitates matching with the specific internal energy. In the case of polytropic gases, α may
be related to molecular degrees of freedom and assumes a constant value [2, 5, 16]. Following [18, 19], in order to
describe non-polytropic gases, we assumed that it depends on temperature, α = α(T ). One of goals of this paper is
to provide an explicit form of such parameter α(T ) using relations between local equilibrium distribution function
and macroscopic variables to relate the parameter α(T ) to temperature dependent specific heats cv(T ) and cp(T ) by
fitting the experimental data [20].

Further improvement is achieved due to a particular structure of the collision cross section (18), which contains
several more parameters that may be adapted. To that end we needed a more refined macroscopic model. Thus,
we decided to intertwine the 14 moments model derived from the Boltzmann equation, and the corresponding 14
moments model derived in the framework of extended thermodynamics. This facilitated explicit computation of
transport coefficients as functions of temperature and kinetic model parameters, by using the code [17]. Experimental
evidence [20] on temperature dependence of shear viscosity and heat conductivity (i.e. Prandtl number) provided a
tool for determination of the cross section parameters.
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Choice of the kinetic model parameters that match macroscopic observables of non-polytropic gases also yielded
a complete closure of the 14 moments model through explicit computation of the relaxation times. This is of great
importance since relaxation times for stress tensor and heat flux are harmonized with experimental data, while bulk
viscosity and relaxation time for dynamic pressure may be computed providing a reliable estimate.

Our procedure was tested on the set of polyatomic gases frequently used in literature. It turned out that our esti-
mates improve the well-known results in [14] regarding the temperature dependence of viscosity, and provide explicit
expressions for the temperature dependent bulk viscosity and relaxation time for dynamic pressure. In particular, for
CO2 these estimates are in a good agreement with recent studies based upon linear wave analysis [1]. Moreover, as
in [21], we observe large bulk viscosity for H2 and a moderate one for N2 and CO.

This gives a solid basis for further applications, especially related to the moment method of kinetic theory, or
equivalent description in extended thermodynamics. This combined approach has already been applied in the study
of shock structure and relaxation in multi-component mixture od Euler fluids [32]. The procedure proposed in our
study, which allows computation of the source terms for higher order moment equations for non-polytropic gases,
opens vast possibilities for analysis of non-equilibrium processes, which were rather limited so far.

More refined estimates on the bulk viscosity that are in agreement with [23] for CO2 can be obtained by extending
the proposed kinetic model with the total internal energy to a kinetic model that comprises rotational and vibrational
internal energy separately, for example, using the idea from [9].

Moreover, it is relevant for applications to use the proposed Boltzmann equation and study the corresponding six
moments model, which focuses on the dynamic pressure as the only non-equilibrium effect and is one of the rare
systems that admits an exact entropy principle [5, 7, 33]. Parameters of the kinetic model would then allow to study
various scenarios as for example in the shock structure problem [22, 33–35] and to compare results with other models
[36].
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ĉv(T̂ )

N2

O2

NO

CO

H2

Cl2

Br2

CO2

CH4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

T̂

ê(T̂ )

FIG. 1. The dimensionless specific heat ĉv and internal energy ê as functions of T̂ from (11) for a specific choice of gas.
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FIG. 2. Dependence of α upon temperature T̂ , scaled from the temperature interval [300, 6000]K.
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FIG. 3. The absolute relative error (in %) of the 14 moments model for the Prandtl number, (46), (10), (35), (37) for the choice
of parameters as in Tables II and III, with respect to the experimental data for certain gases.


